Skip to main content

Virus Separation Using Membranes

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1104))

Abstract

Industrial manufacturing of cell culture-derived viruses or virus-like particles for gene therapy or vaccine production are complex multistep processes. In addition to the bioreactor, such processes require a multitude of downstream unit operations for product separation, concentration, or purification. Similarly, before a biopharmaceutical product can enter the market, removal or inactivation of potential viral contamination has to be demonstrated. Given the complexity of biological solutions and the high standards on composition and purity of biopharmaceuticals, downstream processing is the bottleneck in many biotechnological production trains. Membrane-based filtration can be an economically attractive and efficient technology for virus separation. Viral clearance, for instance, of up to seven orders of magnitude has been reported for state of the art polymeric membranes under best conditions.

This chapter summarizes the fundamentals of virus ultrafiltration, diafiltration, or purification with adsorptive membranes. In lieu of an impractical universally applicable protocol for virus filtration, application of these principles is demonstrated with two examples. The chapter provides detailed methods for production, concentration, purification, and removal of a rod-shaped baculovirus (Autographa californica M nucleopolyhedrovirus, about 40 × 300 nm in size, a potential vector for gene therapy, and an industrially important protein expression system) or a spherical parvovirus (minute virus of mice, 22–26 nm in size, a model virus for virus clearance validation studies).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reis R, Zydney AL (2001) Membrane separations in biotechnology. Curr Opin Biotechnol 12:208–211

    Article  Google Scholar 

  2. GlaxoSmithKline-Biologicals SA (2007) Cervarix® product information, human papillomavirus vaccine types 16 and 18 (recombinant, as04 adjuvanted). Document approved by the Therapeutic Goods Administration

    Google Scholar 

  3. Justice C et al (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29(4):391–401

    Article  CAS  Google Scholar 

  4. Betting DJ et al (2009) Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells. Vaccine 27(2):250–259. doi:10.1016/j.vaccine.2008.10.055

    Article  CAS  Google Scholar 

  5. Lacroix J et al (2010) Parvovirus H1 selectively induces cytotoxic effects on human neuroblastoma cells. Int J Cancer 127(5):1230–1239

    Article  CAS  Google Scholar 

  6. Weiss K et al (2012) Parameters for optimizing production of measles virus with regard to oncolytic virotherapy. Am J Biochem Biotechnol 8(2): 81–98

    Article  CAS  Google Scholar 

  7. Marques BF, Roush DJ, Göklen KE (2009) Virus filtration of high-concentration monoclonal antibody solutions. Biotechnol Prog 25(2):483–491

    Article  CAS  Google Scholar 

  8. Wickramasinghe SR et al (2010) Understanding virus filtration membrane performance. J Membr Sci 365(1–2):160–169

    Article  CAS  Google Scholar 

  9. Bolton G et al (2005) Normal-flow virus filtration: detection and assessment of the endpoint in bioprocessing. Biotechnol Appl Biochem 42(2):133–142. doi:org/10.1042/BA20050056

    Article  CAS  Google Scholar 

  10. Gottschalk U (2009) Process scale purification of antibodies. Wiley, Hoboken, NJ

    Book  Google Scholar 

  11. Nehring D et al (2004) Experimental and modeling study of a membrane filtration process using ceramic membranes to increase retroviral pseudotype vector titer. J Membr Sci 237(1–2):25–38

    Article  CAS  Google Scholar 

  12. Grzenia DL et al (2006) Purification of densonucleosis virus by tangential flow ultrafiltration. Biotechnol Prog 22(5):1346–1353. doi:10.1021/bp060077c

    Article  CAS  Google Scholar 

  13. Reis RV, Zydney AL (1999) Protein ultrafiltration. In: Flickinger MC, Drew SW (eds) Enzyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 2197–2213

    Google Scholar 

  14. Vicente T et al (2009) Purification of recombinant baculoviruses for gene therapy using membrane processes. Gene Ther 16(6): 766–775

    Article  CAS  Google Scholar 

  15. Liew MWO, Chuan YP, Middelberg APJ (2012) Reactive diafiltration for assembly and formulation of virus-like particles. Biochem Eng J 68:120–128

    Article  CAS  Google Scholar 

  16. Barsoum J (1999) Concentration of recombinant baculovirus by cation-exchange chromatography. Biotechniques 26(5):834–836, 838, 840

    CAS  Google Scholar 

  17. Grein TA et al (2012) Purification of a recombinant baculovirus of Autographa californica M nucleopolyhedrovirus by ion exchange membrane chromatography. J Virol Methods 183(2):117–124. doi:10.1016/j.jviromet.2012. 03.031

    Article  CAS  Google Scholar 

  18. Wu C, Soh KY, Wang S (2007) Ion-exchange membrane chromatography method for rapid and efficient purification of recombinant baculovirus and baculovirus gp64 protein. Hum Gene Ther 18(7):665–672

    Article  CAS  Google Scholar 

  19. Charcosset C (2012) Membrane processes in biotechnologies and pharmaceutics, 1st edn. Elsevier, Amsterdam, 336

    Google Scholar 

  20. Kim JS, Akeprathumchai S, Wickramasinghe SR (2001) Flocculation to enhance microfiltration. J Membr Sci 182:161–172

    Article  CAS  Google Scholar 

  21. Wickramasinghe SR et al (2004) Improved permete flux by flocculation of biological feeds: comparision between experiment and theory. J Membr Sci 242:57–71

    Article  CAS  Google Scholar 

  22. Belfort G, Davis RH, Zydney AL (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J Membr Sci 96:1–58

    Article  CAS  Google Scholar 

  23. Ghosh R, Wang L (2006) Purification of humanized monoclonal antibody by hydrophobic interaction membrane chromatography. J Chromatogr A 1107(1–2):104–109

    Article  CAS  Google Scholar 

  24. Hensgen MI et al (2009) Purification of minute virus of mice using high performance tangential flow filtration. Desalination 250(3):1121–1124

    Article  Google Scholar 

  25. Jornitz MW, Soelkner PG, Meltzer TH (2002) Sterile filtration: a review of the past and present technologies. PDA J Pharm Sci Technol 56(4):192–195

    Google Scholar 

  26. Grzenia DL, Carlson JO, Wickramasinghe SR (2008) Tangential flow filtration for virus purification. J Membr Sci 321(2):373–380

    Article  CAS  Google Scholar 

  27. Fikar M, Kovacs Z, Czermak P (2010) Dynamic optimization of batch diafiltration processes. J Membr Sci 355:168–174

    Article  CAS  Google Scholar 

  28. Zydney A, Kuriyel R (2000) Protein ultrafiltration. In: Desai M (ed) Methods in biotechnology downstream protein processing, vol 9. Humana Press, Totowa, NJ, pp 35–46

    Chapter  Google Scholar 

  29. Foley G (1999) Minimisation of process time in ultrafiltration and continuous diafiltration: the effect of incomplete macrosolute rejection. J Membr Sci 163(2):349–355

    Article  CAS  Google Scholar 

  30. Paulen R et al (2011) Minimizing the process time for ultrafiltration/diafiltration under gel polarization conditions. J Membr Sci 380(1–2):148–154

    Article  CAS  Google Scholar 

  31. Foley G (2006) Water usage in variable volume diafiltration: comparison with ultrafiltration and constant volume diafiltration. Desalination 196(1–3):160–163

    Article  CAS  Google Scholar 

  32. Klein E (2000) Affinity membranes: a 10-year review. J Membr Sci 179(1–2):1–27

    Article  CAS  Google Scholar 

  33. Yang H et al (2002) Purification of a large protein using ion-exchange membranes. Ind Eng Chem Res 41(6):1597–1602

    Article  CAS  Google Scholar 

  34. EMEA (2001) Guideline on plasma derived medicinal products. The European Agency of the Evaluation of Medicinal Products. CPMP/BWP/269/95, rev. 3

    Google Scholar 

  35. FDA (1997) U.F.a.D.A., Points to consider in the manufacture and testing of monoclonal antibody products for human use. Center for Biologics Evaluation and Reseach

    Google Scholar 

  36. ICH, Q2(R1) (1996) Validation of analytical procedures: text and methodology. International conference on harmonisation

    Google Scholar 

  37. WHO (1998) Forty-seventh report technical report series, No 878. WHO Expert Committee on Biological Standardization

    Google Scholar 

  38. WHO (2004) Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. WHO technical report series no. 924

    Google Scholar 

  39. EMEA (2012) Guideline on process validation. EMA/CHMP/CVMP/QWP/70278/2012-Rev1

    Google Scholar 

  40. Schmidt S, Kauling J (2006) UV-Inaktivierung von Viren und Bakterien mit einem innovativen Wendelrohrreaktor im Labor- und Prozessmaßstab. Chem Ing Tech 78(11):1739–1745

    Article  CAS  Google Scholar 

  41. Committee, f.P.M.P., Note for guidance on plasma derived products. CPMP/BWP/269/95

    Google Scholar 

  42. ICH-Q5A(R1), Q5(R1) (1999) Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. International conference on harmonisation

    Google Scholar 

  43. Viresolve NFP Filter, M.d.s., available online at http://www.millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4eee/9078b8eecdb57dcf852573af0078aa4f/$FILE/DS2174EN00.pdf. Retrieved 11 Dec 2012

  44. Hongo-Hirasaki T et al (2006) Removal of small viruses (parvovirus) from IgG solution by virus removal filter Planova®20N. J Membr Sci 278(1–2):3–9

    Article  CAS  Google Scholar 

  45. Guideline on virus safety evaluation of biotechnological investigational medicinal products (2008) EMEA/CHMP/BWP/398498/2005 http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003795.pdf. Retrieved 07 Nov 2013

  46. Michalsky R et al (2008) Effects of temperature and shear force on infectivity of the baculovirus Autographa californica M nucleopolyhedrovirus. J Virol Methods 153(2):90–96

    Article  CAS  Google Scholar 

  47. O’Reilly DR, Miller LK, Luckow VA (1994) Baculovirus expression vectors: a laboratory manual. Oxford University Press, New York

    Google Scholar 

  48. Roldão A et al (2009) Error assessment in recombinant Baculovirus titration: evaluation of different methods. J Virol Methods 159(1):69–80

    Article  Google Scholar 

  49. Tsujikawa M et al (2011) Caution in evaluation of removal of virus by filtration: misinterpretation due to detection of viral genome fragments by PCR. J Virol Methods 178(1–2):39–43

    Article  CAS  Google Scholar 

  50. Guo H et al (2010) Low-pressure membrane integrity tests for drinking water treatment: a review. Water Res 44(1):41–57

    Article  CAS  Google Scholar 

  51. DiLeo AJ, Philips MW (1994) Integrity test for membranes. US Patent 5282380

    Google Scholar 

  52. Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of trichoderma viren. Phytopathology 94(2):171–176

    Article  CAS  Google Scholar 

  53. Czermak P, Nehring D, Wickramasinghe R (2007) Membrane filtration in animal cell culture. In: Pörtner (ed) Animal cell biotechnology: methods and protocols. Humana Press, Totoba, pp 397–420

    Chapter  Google Scholar 

  54. Clarke TE, Clem RJ (2002) Lack of involvement of haemocytes in the establishment and spread of infection in Spodoptera frugiperda larvae infected with the baculovirus Autographa californica M nucleopolyhedrovirus by intrahaemocoelic injection. J Gen Virol 83(7):1565–1572

    CAS  Google Scholar 

  55. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27(3):493–497

    Google Scholar 

  56. O’Reilly DR, Miller LK, Luckow VA (1993) Baculovirus expression vectors: a laboratory manual. Oxford University Press, New York

    Google Scholar 

  57. Aucoin MG, Mena JA, Kamen AA (2010) Bioprocessing of baculovirus vectors: a review. Curr Gene Ther 10(3):174–186

    Article  CAS  Google Scholar 

  58. Stanbridge LJ, Dussupt V, Maitland NJ (2003) Baculoviruses as vectors for gene therapy against human prostate cancer. J Biomed Biotechnol 2003(2):79–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grein, T.A., Michalsky, R., Czermak, P. (2014). Virus Separation Using Membranes. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 1104. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-733-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-733-4_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-732-7

  • Online ISBN: 978-1-62703-733-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics