Skip to main content

Membrane Filtration in Animal Cell Culture

  • Protocol
Animal Cell Biotechnology

Part of the book series: Methods in Biotechnology ((MIBT,volume 24))

Abstract

Membrane filtration is frequently used in animal cell culture for bioreactor harvesting, protein concentration, buffer exchange, virus filtration, and sterile filtration. A variety of membrane materials and pore sizes ranging from loose microfiltration membranes to tight ultrafiltration membranes, which reject small proteins, are frequently found in a purification train. While all of these operations make use of the same size-based separation principle, the actual methods of operation vary significantly.

Microfiltration is often the first of the unit operations in the purification train. Microfiltration membranes have pores in the micrometer size range. Microfiltration is used to remove cells and cell debris. This chapter begins by describing tangential flow microfiltration. A typical method of operation is included.

Concentration of the product and buffer exchange is often required toward the end of the purification train. Ultrafiltration membranes are used for both operations. The theory of tangential flow ultrafiltration is briefly described followed by a typical method of operation.

Today, large-pore ultrafiltration membranes (molecular weight cutoff 100–500 kDa) are finding increasing applications for virus filtration. Validation of virus cleaner is a major concern in the biopharmaceutical industry. At the same time, purification of virus particles for viral vaccines and applications in gene therapy is a major separations challenge. Consequently, the second part of this chapter focuses on these membrane filtration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Reis, R. and Zydney, A. L. (2001) Membrane separations in biotechnology. Curr. Opin. Biotechnol. 12, 208–211.

    Article  PubMed  Google Scholar 

  2. Czermak, P. and Catapano, G. (2003) Accuracy of Automated Flow-Measuring Devices Used in the Pharmaceutical Industry for Testing Sterile Filter Integrity, PDA J. Pharm. Sci. Technol. 57, 277–286.

    PubMed  Google Scholar 

  3. Davis, R. H. (1992) Microfiltration, in Membrane Handbook (Ho, W. S. W. and Sirkar, K. K., eds.), Springer, New York.

    Google Scholar 

  4. van Reis R. and Zydney, A. L. (1999) Protein ultrafiltration, in Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation (Flickinger, M. C. and Drew, S. W. eds.), Wiley, New York, pp. 2197–2213.

    Google Scholar 

  5. Kim, J. S., Akeprathumchai, S., and Wickramasinghe, S. R. (2001) Flocculation to enhance microfiltration. J. Membr. Sci. 182, 161–172.

    Article  CAS  Google Scholar 

  6. Wickramasinghe, S. R., Han, B., Akeprathumchai, S., Chen, V., Neal, P., and Qian, X. (2004) Improved permete flux by flocculation of biological feeds: comparision between experiment and theory. J. Membr. Sci. 242, 57–71.

    Article  CAS  Google Scholar 

  7. Belfort, G., Davis, R. H., and Zydney, A. L. (1994) The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J. Membr. Sci. 96, 1–58.

    Article  CAS  Google Scholar 

  8. Belter, P. A., Cussler, E. L., and Hu, W. S. (1998) Bioseparations. Wiley, New York.

    Google Scholar 

  9. van Reis R., et al. (1991) Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol. Bioeng. 38, 413–422.

    Article  PubMed  Google Scholar 

  10. Ng, P. K., et al. (2001) Filter applications in product recovery processes, Membrane Seperations in Biotechnology (Wang, W. K., ed.), Marcel Dekker, New York, pp. 205–224.

    Google Scholar 

  11. Russotti, G. and Göklen, K. E. (2001) Crossflow membrane filtration of fermentation broth, in W. K. Wang (ed.) Membrane Separations in Biotechnology (Wang, W. K., ed.), Marcel Dekker, New York, pp. 85–159.

    Google Scholar 

  12. Woodside, S. M., et al. (1998) Mammalian cell retention devices for stirred perfusion bioreactors. Cytotechnology 28, 163–175.

    Article  PubMed  CAS  Google Scholar 

  13. Voisard D., Meuwly, F., Ruffieux, P.-A., Baer, G., and Kadouri, A. (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechol. Bioeng. 82, 751–765.

    Article  CAS  Google Scholar 

  14. Dong, H., et al. (2005) A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Biotechnol. Prog. 21, 140–147.

    Article  PubMed  CAS  Google Scholar 

  15. Kurnik, R. T., Yu, A. W., Blank, G. S., et al. (1995) Buffer exchange using size exclusion chromatography, countercurrent dialysis, and tangential flow filtration: models, development, and industrial application. Biotechnol. Bioeng. 45, 149–157.

    Article  PubMed  CAS  Google Scholar 

  16. Zydney, A. L. and Kuriyel, R. (2000) Protein ultrafiltration, in Downstream Protein Processing (Desai, M., ed.), Humana Press, Totowa, NJ, pp. 35–46.

    Chapter  Google Scholar 

  17. Ogle, K. E and Azari, M. R. (2001) Virus removal by ultrafiltration, in Membrane Separations in Biotechnology (Wang, W. K. ed.), Marcel Dekker, New York, pp. 299–326.

    Google Scholar 

  18. Aranha-Creado, H. and Fennington, G. J. (1997) Cumultative viral titer reduction demonstrated by sequential challenge of a tangential flow membrane filtration system and a direct flow pleated filter cartridge. J. Pharm. Sci. Technol. 51, 208–212.

    CAS  Google Scholar 

  19. DiLeo, A. J., Allegrezza, A. E., and Builder, S. E. (1992) High resolution removal of virus from protein solutions using a membrane of unique structure. Bio/Technology 10, 182–188.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, P. Y. and Peterson, J. (2001) Scale-up and virus clearance studies on virus filtration in monoclonal antibody manufacture, in Membrane Separations in Biotechnology (Wang, W. K., ed.), Marcel Dekker, New York, pp. 327–350.

    Google Scholar 

  21. Committee for Proprietary Medicinal Products (CPMP) Note for Guidance on Plasma Derived Products (CPMP/BWP/269/95).

    Google Scholar 

  22. Kuriyel, R. and Zydney, A. L. (2000) Sterile filtration and virus filtration, in Downstream Protein Processing (Desai M., ed.), Humana Press, Totowa, NJ, pp. 185–194.

    Chapter  Google Scholar 

  23. Specht, R., Han, B., Wickramasinghe, S. R., et al. (2004) Densonucleosis virus purification by ion exchange membranes. Biotechnol. Bioeng. 88(4), 465–473.

    Article  PubMed  CAS  Google Scholar 

  24. Han, B., Specht, R., Carlson, J. O., and Wickramasinghe, S. R. (2005) Virus purification using adsorptive membranes. J. Chromatogr. A 1092, 114–124.

    Article  PubMed  CAS  Google Scholar 

  25. Grzenia, D. (2005) Virus removal from biological suspension using ultrafiltration, DA thesis, University of Applied Sciences, Giessen.

    Google Scholar 

  26. Andreadis, S. T., et al. (1999) Large scale processing of recombinant retroviruses for gene therapy. Biotechnol. Prog. 15, 1–11.

    Article  PubMed  CAS  Google Scholar 

  27. Nehring, D., Gonzalez, R., Pörtner, R., and Czermak, P. (2004) Mathematical model of a filtration process using ceramic membranes to increase retroviral pseudotype vector titer. J. Membrane Sci. 237(1–2), 25–38.

    Article  CAS  Google Scholar 

  28. Cruz, P. E., Goncalves, D., Almeida, J., Moreira, J., and Carrondo, M. J. T. (2000) Modeling retrovirus production for gene therapy. 2. Integrated optimization of bioreaction and downstream processing. Biotechnol. Prog. 16, 350–357.

    Article  PubMed  CAS  Google Scholar 

  29. Kuiper, M., Sanches, R. M., Walford, J. A., and Slater, N. K. H. (2002) Purification of a functional gene therapy vector derived from moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol. Bioeng. 80, 445–453.

    Article  PubMed  CAS  Google Scholar 

  30. Nehring, D., Gonzalez, R., Pörtner, R., and Czermak, P. (2006) Experimental and modelling study of different process modes for retroviral production in a fixed bed reactor. J. Biotechnol. 122, 239–253.

    Article  PubMed  CAS  Google Scholar 

  31. Clayton, T. M. (2000) Cell products-viral gene therapy vectors, in Encyclopedia of Cell Technology (Spier, R. E., ed.), Wiley and Sons, Chichester, UK, pp. 441–457.

    Google Scholar 

  32. Stitz, J., Mueller, P., Merget-Millitzer, H., and Cichutek, K. (1998) High-titer retroviral pseudotype vectors for specific targeting of human CD4-positive cells. J. Biogenic. Amines. 14, 407–424.

    CAS  Google Scholar 

  33. Andreadis, S., Lavery, T., Davis, H. E., Le Doux, J. M., Yarmush, M. L., and Morgan, J. R. (2000) Toward a more accurate quantitation of the activity of recombinant retroviruses: alternatives to titer and multiplicity of infection. J. Virol. 74, 1258–1266.

    Article  PubMed  CAS  Google Scholar 

  34. Cosset, F.-L., Takeuchi, Y., Battini, J.-L., Weiss, R. A., and Collins, M. K. L. (1995) High-titer packaging cells producing recombinant resistant retroviruses to human serum. J. Virol. 69, 7430–7436.

    PubMed  CAS  Google Scholar 

  35. Czermak P., Ebrahimi, M., and Catapano, G. (2005) New generation ceramic membranes have the potential of removing endotoxins from dialysis water and dialysate. Int. J. Artif. Organs 28(7), 694–700.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Czermak, P., Nehring, D., Wickramasinghe, R. (2007). Membrane Filtration in Animal Cell Culture. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Biotechnology, vol 24. Humana Press. https://doi.org/10.1007/978-1-59745-399-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-399-8_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-660-3

  • Online ISBN: 978-1-59745-399-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics