Skip to main content

Analysis of Membrane Lipid Biogenesis Pathways Using Yeast Genetics

  • Protocol
  • First Online:
Membrane Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1033))

  • 3143 Accesses

Abstract

The yeast Saccharomyces cerevisiae has become a valuable eukaryotic model organism to study biochemical and cellular processes at a molecular basis. A common strategy for such studies is the use of single and multiple mutants constructed by genetic manipulation which are compromised in individual enzymatic steps or certain metabolic pathways. Here, we describe selected examples of yeast research on phospholipid metabolism with emphasis on our own work dealing with investigations of phosphatidylethanolamine synthesis. Such studies start with the selection and construction of appropriate mutants and lead to phenotype analysis, lipid profiling, enzymatic analysis, and in vivo experiments. Comparing results obtained with wild-type and mutant strains allows us to understand the role of gene products and metabolic processes in more detail. Such studies are valuable not only for contributing to our knowledge of the complex network of lipid metabolism, but also of effects of lipids on structure and function of cellular membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMPE:

Dimethylethanolamine

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

References

  1. Sud M, Fahy E, Cotter D et al (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35:D527–D532

    Article  PubMed  CAS  Google Scholar 

  2. Meer GV, Voelker DR, Feigensonvan GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  Google Scholar 

  3. Athenstaedt K, Daum G (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 280:37301–37309

    Article  PubMed  CAS  Google Scholar 

  4. Gaspar ML, Aregullin MA, Jesch SA et al (2007) The emergence of yeast lipidomics. Biochim Biophys Acta 1771:241–254

    Article  PubMed  CAS  Google Scholar 

  5. Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem 271: 13293–13296

    Article  PubMed  CAS  Google Scholar 

  6. Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47:157–171

    Article  PubMed  CAS  Google Scholar 

  7. Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38:361–399

    Article  PubMed  CAS  Google Scholar 

  8. Chen M, Hancock LC, Lopes JM (2007) Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta 1771:310–321

    Article  PubMed  CAS  Google Scholar 

  9. Carman GM, Han GS (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim Biophys Acta 1771:322–330

    Article  PubMed  CAS  Google Scholar 

  10. Patton-Vogt J (2007) Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation. Biochim Biophys Acta 1771:337–342

    Article  PubMed  CAS  Google Scholar 

  11. Santos-Rosa H, Leung J, Grimsey N et al (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J 24:1931–1941

    Article  PubMed  CAS  Google Scholar 

  12. Li G, Chen S, Thompson MN, Greenberg ML (2007) New insights into the regulation of cardiolipin biosynthesis in yeast: implications for Barth syndrome. Biochim Biophys Acta 1771:432–441

    Article  PubMed  CAS  Google Scholar 

  13. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  PubMed  CAS  Google Scholar 

  14. Struhl K, Stinchcomb DT, Scherer S et al (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    Article  PubMed  CAS  Google Scholar 

  15. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  PubMed  CAS  Google Scholar 

  16. Carman GM, Han GS (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 80:859–883

    Article  PubMed  CAS  Google Scholar 

  17. Schuiki I, Schnabl M, Czabany T et al (2010) Phosphatidylethanolamine synthesized by four different pathways is supplied to the plasma membrane of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1801: 480–486

    Article  PubMed  CAS  Google Scholar 

  18. Birner R, Nebauer R, Schneiter R et al (2003) Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine biosynthetic machinery with the prohibitin complex of Saccharomyces cerevisiae. Mol Biol Cell 14:370–383

    Article  PubMed  CAS  Google Scholar 

  19. Bürgermeister M, Birner-Grünberger R, Nebauer R et al (2004) Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1686:161–168

    Article  PubMed  Google Scholar 

  20. Gohil VM, Thompson MN, Greenberg ML (2005) Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. J Biol Chem 280: 35410–35416

    Article  PubMed  CAS  Google Scholar 

  21. Nebauer R, Schuiki I, Kulterer B et al (2007) The phosphatidylethanolamine level of yeast mitochondria is affected by the mitochondrial components Oxa1p and Yme1p. FEBS J 274:6180–6190

    Article  PubMed  CAS  Google Scholar 

  22. Storey MK, Clay KL, Kutateladze T et al (2001) Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures. J Biol Chem 276:48539–48548

    PubMed  CAS  Google Scholar 

  23. Hui SW, Stewart TP, Yeagle PL et al (1981) Bilayer to non-bilayer transition in mixtures of phosphatidylethanolamine and phosphatidylcholine: implications for membrane properties. Arch Biochem Biophys 207:227–240

    Article  PubMed  CAS  Google Scholar 

  24. Zinser E, Sperka-Gottlieb CDM, Fasch EV et al (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173:2026–2034

    PubMed  CAS  Google Scholar 

  25. Trotter PJ, Voelker DR (1995) Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J Biol Chem 270:6062–6070

    Article  PubMed  CAS  Google Scholar 

  26. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222:193–214

    PubMed  CAS  Google Scholar 

  27. Birner R, Daum G (2003) Biogenesis and cellular dynamics of aminoglycerophospholipids. Int Rev Cytol 225:273–323

    Article  PubMed  CAS  Google Scholar 

  28. Daum G, Lees ND, Bard M et al (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  PubMed  CAS  Google Scholar 

  29. Riekhof WR, Voelker DR (2006) Uptake and utilization of lyso-phosphatidylethanolamine by Saccharomyces cerevisiae. J Biol Chem 281:36588–36596

    Article  PubMed  CAS  Google Scholar 

  30. Riekhof WR, Wu J, Jones JL et al (2007) Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282: 28344–28352

    Article  PubMed  CAS  Google Scholar 

  31. Kim K, Kim K-H, Storey MK et al (1999) Isolation and characterization of the Saccharomyces cerevisiae EKI1 gene encoding ethanolamine kinase. J Biol Chem 274: 14857–14866

    Article  PubMed  CAS  Google Scholar 

  32. Hosaka K, Kodaki T, Yamashita S (1989) Cloning and characterization of the yeast CKI gene encoding choline kinase and its expression in Escherichia coli. J Biol Chem 264: 2053–2059

    PubMed  CAS  Google Scholar 

  33. Saba JD, Nara F, Bielawska A et al (1997) The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem 272:26087–26090

    Article  PubMed  CAS  Google Scholar 

  34. Gottlieb D, Heideman W, Saba JD (1999) The DPL1 gene is involved in mediating the response to nutrient deprivation in Saccharomyces cerevisiae. Mol Cell Biol Res Commun 1:66–71

    Article  PubMed  CAS  Google Scholar 

  35. Trotter PJ, Pedretti J, Yates R et al (1995) Phosphatidylserine decarboxylase 2 of Saccharomyces cerevisiae. Cloning and mapping of the gene, heterologous expression, and creation of the null allele. J Biol Chem 270: 6071–6080

    Article  PubMed  CAS  Google Scholar 

  36. Horvath SE, Wagner A, Steyrer E et al (2011) Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1811:1030–1037

    Article  PubMed  CAS  Google Scholar 

  37. Birner R, Bürgermeister M, Schneiter R et al (2001) Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol Biol Cell 12: 997–1007

    Article  PubMed  CAS  Google Scholar 

  38. Stahl U, Stalberg K, Stymne S et al (2008) A family of eukaryotic lysophospholipid acyltransferases with broad specificity. FEBS Lett 582:305–309

    Article  PubMed  CAS  Google Scholar 

  39. Jain S, Stanford N, Bhagwat N et al (2007) Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae. J Biol Chem 282:30562–30569

    Article  PubMed  CAS  Google Scholar 

  40. Tamaki H, Shimada A, Ito Y et al (2007) LPT1 Encodes a membrane-bound O-acyltransferase involved in the acylation of lysophospholipids in the yeast Saccharomyces cerevisiae. J Biol Chem 282:34288–34298

    Article  PubMed  CAS  Google Scholar 

  41. Achleitner G, Zweytick D, Trotter P et al (1995) Synthesis and intracellular transport of aminoglycerophospholipids in permeabilized cells of the yeast, Saccharomyces cerevisiae. J Biol Chem 270:29836–29842

    Article  PubMed  CAS  Google Scholar 

  42. Kuchler K, Daum G, Paltauf F (1986) Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J Bacteriol 165:901–910

    PubMed  CAS  Google Scholar 

  43. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  44. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  45. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  46. Broekhuyse RM (1968) Phospholipids in tissues of the eye. I. Isolation, characterization and quantitative analysis by two-dimensional thin-layer chromatography of diacyl and vinyl-ether phospholipids. Biochim Biophys Acta 152:307–315

    Article  PubMed  CAS  Google Scholar 

  47. Hampsey M (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast 13:1099–1133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund FWF (project 21429 and DK Molecular Enzymology W901-B05 to GD). The authors are grateful to Edina Harsay for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gsell, M., Daum, G. (2013). Analysis of Membrane Lipid Biogenesis Pathways Using Yeast Genetics. In: Rapaport, D., Herrmann, J. (eds) Membrane Biogenesis. Methods in Molecular Biology, vol 1033. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-487-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-487-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-486-9

  • Online ISBN: 978-1-62703-487-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics