Skip to main content

Real-Time Quantitative (RQ-)PCR Approach to Quantify the Contribution of Proliferation to B Lymphocyte Homeostasis

  • Protocol
  • First Online:
Immune Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 979))

Abstract

The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T-cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are relatively stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative polymerase chain reaction (RQ-PCR)-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring kappa-deleting rearrangements in the IGK light chain loci in man and mouse. The approach is useful to study the contribution of proliferation to B-cell homeostasis in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkowska MA, van der Burg M, van Dongen JJM, van Zelm MC (2011) Checkpoints of B cell differentiation: visualizing Ig-centric processes. Ann N Y Acad Sci 1246:11–25

    Google Scholar 

  2. van Zelm MC, van der Burg M, van Dongen JJ (2007) Homeostatic and maturation-­associated proliferation in the peripheral B-cell compartment. Cell Cycle 6:2890–2895

    Article  PubMed  Google Scholar 

  3. Cuss AK, Avery DT, Cannons JL, Yu LJ, Nichols KE, Shaw PJ, Tangye SG (2006) Expansion of functionally immature transitional B cells is associated with human-immunodeficient states characterized by impaired humoral immunity. J Immunol 176:1506–1516

    PubMed  CAS  Google Scholar 

  4. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE (2005) Identification and characterization of circulating human ­transitional B cells. Blood 105:4390–4398

    Article  PubMed  CAS  Google Scholar 

  5. Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, Lamers MC, Carsetti R (1999) B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 190:75–89

    Article  PubMed  CAS  Google Scholar 

  6. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR (2001) Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 167:6834–6840

    PubMed  CAS  Google Scholar 

  7. van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJ (2007) Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. J Exp Med 204:645–655

    Article  PubMed  Google Scholar 

  8. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377

    Article  PubMed  CAS  Google Scholar 

  9. Lam KP, Kuhn R, Rajewsky K (1997) In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90:1073–1083

    Article  PubMed  CAS  Google Scholar 

  10. Torres RM, Flaswinkel H, Reth M, Rajewsky K (1996) Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272:1804–1808

    Article  PubMed  CAS  Google Scholar 

  11. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K (2009) PI3 kinase signals BCR-dependent mature B cell survival. Cell 139:573–586

    Article  PubMed  CAS  Google Scholar 

  12. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  PubMed  CAS  Google Scholar 

  13. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S (2008) Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 9:388–395

    Article  PubMed  CAS  Google Scholar 

  14. Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, Bucala R, Shachar I (2008) Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem 283:2784–2792

    Article  PubMed  CAS  Google Scholar 

  15. Matza D, Lantner F, Bogoch Y, Flaishon L, Hershkoviz R, Shachar I (2002) Invariant chain induces B cell maturation in a process that is independent of its chaperonic activity. Proc Nat Acad Sci USA 99:3018–3023

    Article  CAS  Google Scholar 

  16. Shachar I, Flavell RA (1996) Requirement for invariant chain in B cell maturation and function. Science 274:106–108

    Article  PubMed  CAS  Google Scholar 

  17. Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol 21:231–264

    Article  PubMed  CAS  Google Scholar 

  18. Dillon SR, Gross JA, Ansell SM, Novak AJ (2006) An APRIL to remember: novel TNF ligands as therapeutic targets. Nat Rev Drug Discov 5:235–246

    Article  PubMed  CAS  Google Scholar 

  19. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995–999

    Article  PubMed  CAS  Google Scholar 

  20. Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A (2000) Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol 10:785–788

    Article  PubMed  CAS  Google Scholar 

  21. Thompson JS, Schneider P, Kalled SL, Wang L, Lefevre EA, Cachero TG, MacKay F, Bixler SA, Zafari M, Liu ZY, Woodcock SA, Qian F, Batten M, Madry C, Richard Y, Benjamin CD, Browning JL, Tsapis A, Tschopp J, Ambrose C (2000) BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 192:129–135

    Article  PubMed  CAS  Google Scholar 

  22. Wu Y, Bressette D, Carrell JA, Kaufman T, Feng P, Taylor K, Gan Y, Cho YH, Garcia AD, Gollatz E, Dimke D, LaFleur D, Migone TS, Nardelli B, Wei P, Ruben SM, Ullrich SJ, Olsen HS, Kanakaraj P, Moore PA, Baker KP (2000) Tumor necrosis factor (TNF) receptor ­superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem 275:35478–35485

    Article  PubMed  CAS  Google Scholar 

  23. Yu G, Boone T, Delaney J, Hawkins N, Kelley M, Ramakrishnan M, McCabe S, Qiu WR, Kornuc M, Xia XZ, Guo J, Stolina M, Boyle WJ, Sarosi I, Hsu H, Senaldi G, Theill LE (2000) APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 1:252–256

    Article  PubMed  CAS  Google Scholar 

  24. Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, Hession C, Schneider P, Sizing ID, Mullen C, Strauch K, Zafari M, Benjamin CD, Tschopp J, Browning JL, Ambrose C (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293:2108–2111

    Article  PubMed  CAS  Google Scholar 

  25. Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, Cancro M, Grewal IS, Dixit VM (2001) Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 11:1547–1552

    Article  PubMed  CAS  Google Scholar 

  26. Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Pals ST, Hahne M, Spaargaren M, Medema JP (2005) Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 12:637–648

    Article  PubMed  CAS  Google Scholar 

  27. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H, Rennert PD, Tschopp J, Schneider P (2005) Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 201:1375–1383

    Article  PubMed  CAS  Google Scholar 

  28. Schneider P (2005) The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 17:282–289

    Article  PubMed  CAS  Google Scholar 

  29. Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, Rixon M, Schou O, Foley KP, Haugen H, McMillen S, Waggie K, Schreckhise RW, Shoemaker K, Vu T, Moore M, Grossman A, Clegg CH (2001) TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 15:289–302

    Article  PubMed  CAS  Google Scholar 

  30. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, Frew E, Scott ML (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293:2111–2114

    Article  PubMed  CAS  Google Scholar 

  31. Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Bohm J, Kienzler AK, Pan-Hammarstrom Q, Hammarstrom L, Rakhmanov M, Schlesier M, Grimbacher B, Peter HH, Eibel H (2009) B-cell activating factor receptor deficiency is associated with an adult-onset ­antibody deficiency syndrome in humans. Proc Nat Acad Sci USA 106:13945–13950

    Article  CAS  Google Scholar 

  32. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA, Roby G, Kottilil S, Arthos J, Proschan MA, Chun TW, Fauci AS (2008) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205:1797–1805

    Article  PubMed  CAS  Google Scholar 

  33. Berkowska MA, Driessen GJ, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A, He B, Biermann K, Lange JF, van der Burg M, van Dongen JJ, van Zelm MC (2011) Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood 118:2150–2158

    Article  PubMed  CAS  Google Scholar 

  34. Rakhmanov M, Keller B, Gutenberger S, Foerster C, Hoenig M, Driessen G, van der Burg M, van Dongen JJ, Wiech E, Visentini M, Quinti I, Prasse A, Voelxen N, Salzer U, Goldacker S, Fisch P, Eibel H, Schwarz K, Peter HH, Warnatz K (2009) Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc Nat Acad Sci USA 106:13451–13456

    Article  CAS  Google Scholar 

  35. van der Burg M, Pac M, Berkowska MA, Goryluk-Kozakiewicz B, Wakulinska A, Dembowska-Baginska B, Gregorek H, Barendregt BH, Krajewska-Walasek M, Bernatowska E, van Dongen JJ, Chrzanowska KH, Langerak AW (2010) Loss of juxtaposition of RAG-induced immunoglobulin DNA ends is implicated in the precursor B-cell differentiation defect in NBS patients. Blood 115:4770–4777

    Article  PubMed  Google Scholar 

  36. Driessen GJ, van Zelm MC, van Hagen PM, Hartwig NG, Trip M, Warris A, de Vries E, Barendregt BH, Pico I, Hop W, van Dongen JJ, van der Burg M (2011) B-cell replication history and somatic hypermutation status identify distinct pathophysiological backgrounds in common variable immunodeficiency. Blood 118:6814–6823

    Google Scholar 

  37. van Zelm MC, van der Burg M, de Ridder D, Barendregt BH, de Haas EF, Reinders MJ, Lankester AC, Revesz T, Staal FJ, van Dongen JJ (2005) Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol 175:5912–5922

    PubMed  Google Scholar 

  38. van der Burg M, Kreyenberg H, Willasch A, Barendregt BH, Preuner S, Watzinger F, Lion T, Roosnek E, Harvey J, Alcoceba M, Diaz MG, Bader P, van Dongen JJ (2011) Standardization of DNA isolation from low cell numbers for chimerism analysis by PCR of short tandem repeats. Leukemia 25: 1467–1470

    Article  PubMed  Google Scholar 

  39. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der Schoot CE, van Dongen JJ (1998) Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12:2006–2014

    Article  PubMed  CAS  Google Scholar 

  40. Van Zelm MC, Van Der Burg M, Langerak AW, Van Dongen JJM (2011) PID comes full circle: applications of V(D)J recombination excision circles in research, diagnostics and newborn screening of primary immunodeficiency disorders. Front Immun 2:1–9

    Google Scholar 

  41. Shimizu T, Iwasato T, Yamagishi H (1991) Deletions of immunoglobulin C kappa region characterized by the circular excision products in mouse splenocytes. J Exp Med 173:1065–1072

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MAB is supported by a Fellowship from the Ter Meulen Fund–Royal Netherlands Academy of Arts and Sciences. MCvZ is supported by an Erasmus University Rotterdam (EUR)-Fellowship, an Erasmus MC Fellowship, by Veni grant 916.110.90 from ZonMW/NWO and by grant 689 of the Sophia Children’s Hospital Fund.

Conflict of interest

JJMvD is inventor of the KREC assay, which has been patented (PCT/NL 2005/000761; priority date 25 Oct 2004) and licensed to InVivoScribe Technologies, San Diego, CA; revenues of the patent go to Erasmus MC. The other authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menno C. van Zelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Zelm, M.C., Berkowska, M.A., van der Burg, M., van Dongen, J.J.M. (2013). Real-Time Quantitative (RQ-)PCR Approach to Quantify the Contribution of Proliferation to B Lymphocyte Homeostasis. In: Snow, A., Lenardo, M. (eds) Immune Homeostasis. Methods in Molecular Biology, vol 979. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-290-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-290-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-289-6

  • Online ISBN: 978-1-62703-290-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics