Skip to main content

Neurofilaments: Properties, Functions, and Regulation

  • Protocol
  • First Online:
The Cytoskeleton

Part of the book series: Neuromethods ((NM,volume 79))

Abstract

Neuronal intermediate filaments are the most prominent cytoskeleton component of adult neurons in both central and peripheral nervous system. They include neurofilament triplet proteins, peripherin, α-internexin, nestin, and synemin. Although it was initially thought that neuronal intermediate filaments serve a primarily structural function, it has since been demonstrated that they constitute a dynamic network involved in neuronal differentiation, axon outgrowth, and regeneration. Finally, they emerged as a primary cause of some neurodegenerative diseases. Here, we focus on the properties, function, and regulation of neuronal intermediate filaments as well as their relationship to different neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Julien JP, Mushynski WE (1998) Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 61:1–23

    Article  PubMed  CAS  Google Scholar 

  2. Yuan A, Rao MV, Sasaki T et al (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    Article  PubMed  CAS  Google Scholar 

  3. Yan Y, Jensen K, Brown A (2007) The polypeptide composition of moving and stationary neurofilaments in cultured sympathetic neurons. Cell Motil Cytoskeleton 64:299–309

    Article  PubMed  CAS  Google Scholar 

  4. Perrot R, Berges R, Bocquet A et al (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    Article  PubMed  CAS  Google Scholar 

  5. Nixon RA, Shea TB (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton 22:81–91

    Article  PubMed  CAS  Google Scholar 

  6. Perrot R, Eyer J (2009) Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 80:282–295

    Article  PubMed  CAS  Google Scholar 

  7. Herrmann H, Bar H, Kreplak L et al (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573

    Article  PubMed  CAS  Google Scholar 

  8. Kim S, Coulombe PA (2007) Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21:1581–1597

    Article  PubMed  CAS  Google Scholar 

  9. Oshima RG (2007) Intermediate filaments: a historical perspective. Exp Cell Res 313:1981–1994

    Article  PubMed  CAS  Google Scholar 

  10. Beaulieu JM, Robertson J, Julien JP (1999) Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 77:41–45

    Article  PubMed  CAS  Google Scholar 

  11. Morris JR, Lasek RJ (1982) Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol 92:192–198

    Article  PubMed  CAS  Google Scholar 

  12. Carter J, Gragerov A, Konvicka K et al (1998) Neurofilament (NF) assembly; divergent characteristics of human and rodent NF-L subunits. J Biol Chem 273:5101–5108

    Article  PubMed  CAS  Google Scholar 

  13. Gardner EE, Dahl D, Bignami A (1984) Formation of 10-nanometer filaments from the 150 K-dalton neurofilament protein in vitro. J Neurosci Res 11:145–155

    Article  PubMed  CAS  Google Scholar 

  14. Geisler N, Weber K (1981) Self-assembly in Vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filaments. J Mol Biol 151:565–571

    Article  PubMed  CAS  Google Scholar 

  15. Hisanaga S, Hirokawa N (1988) Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J Mol Biol 202:297–305

    Article  PubMed  CAS  Google Scholar 

  16. Hisanaga S, Hirokawa N (1990) Molecular architecture of the neurofilament. II. Reassembly process of neurofilament L protein in vitro. J Mol Biol 211:871–882

    Article  PubMed  CAS  Google Scholar 

  17. Jacomy H, Zhu Q, Couillard-Despres S et al (1999) Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J Neurochem 73:972–984

    Article  PubMed  CAS  Google Scholar 

  18. Liem RK, Hutchison SB (1982) Purification of individual components of the neurofilament triplet: filament assembly from the 70 000-dalton subunit. Biochemistry 21:3221–3226

    Article  PubMed  CAS  Google Scholar 

  19. Lee MK, Xu Z, Wong PC et al (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol 122:1337–1350

    Article  PubMed  CAS  Google Scholar 

  20. Scott D, Smith KE, O’Brien BJ et al (1985) Characterization of mammalian neurofilament triplet proteins. Subunit stoichiometry and morphology of native and reconstituted filaments. J Biol Chem 260:10736–10747

    PubMed  CAS  Google Scholar 

  21. Geisler N, Kaufmann E, Fischer S et al (1983) Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins. EMBO J 2:1295–1302

    PubMed  CAS  Google Scholar 

  22. Birkenberger L, Ip W (1990) Properties of the desmin tail domain: studies using synthetic peptides and antipeptide antibodies. J Cell Biol 111:2063–2075

    Article  PubMed  CAS  Google Scholar 

  23. Julien JP, Mushynski WE (1982) Multiple phosphorylation sites in mammalian neurofilament polypeptides. J Biol Chem 257:10467–10470

    PubMed  CAS  Google Scholar 

  24. Julien JP, Mushynski WE (1983) The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem 258:4019–4025

    PubMed  CAS  Google Scholar 

  25. Angelides KJ, Smith KE, Takeda M (1989) Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures. J Cell Biol 108:1495–1506

    Article  PubMed  CAS  Google Scholar 

  26. Heins S, Wong PC, Muller S et al (1993) The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol 123:1517–1533

    Article  PubMed  CAS  Google Scholar 

  27. Herrmann H, Haner M, Brettel M et al (1999) Characterization of distinct early assembly units of different intermediate filament proteins. J Mol Biol 286:1403–1420

    Article  PubMed  CAS  Google Scholar 

  28. Parry DA, Strelkov SV, Burkhard P et al (2007) Towards a molecular description of intermediate filament structure and assembly. Exp Cell Res 313:2204–2216

    Article  PubMed  CAS  Google Scholar 

  29. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu Rev Biochem 73:749–789

    Article  PubMed  CAS  Google Scholar 

  30. Balin BJ, Clark EA, Trojanowski JQ et al (1991) Neurofilament reassembly in vitro: biochemical, morphological and immuno-electron microscopic studies employing monoclonal antibodies to defined epitopes. Brain Res 556:181–195

    Article  PubMed  CAS  Google Scholar 

  31. Balin BJ, Lee VM (1991) Individual neurofilament subunits reassembled in vitro exhibit unique biochemical, morphological and immunological properties. Brain Res 556:196–208

    Article  PubMed  CAS  Google Scholar 

  32. Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98:1523–1536

    Article  PubMed  CAS  Google Scholar 

  33. Kim S, Chang R, Teunissen C et al (2011) Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure. J Neurol Sci 307:132–138

    Article  PubMed  CAS  Google Scholar 

  34. Chin SS, Macioce P, Liem RK (1991) Effects of truncated neurofilament proteins on the endogenous intermediate filaments in transfected fibroblasts. J Cell Sci 99(Pt 2):335–350

    PubMed  CAS  Google Scholar 

  35. Ching GY, Liem RK (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol 122:1323–1335

    Article  PubMed  CAS  Google Scholar 

  36. Ching GY, Liem RK (1999) Analysis of the roles of the head domains of type IV rat neuronal intermediate filament proteins in filament assembly using domain-swapped chimeric proteins. J Cell Sci 112(Pt 13):2233–2240

    PubMed  CAS  Google Scholar 

  37. Gill SR, Wong PC, Monteiro MJ et al (1990) Assembly properties of dominant and recessive mutations in the small mouse neurofilament (NF-L) subunit. J Cell Biol 111:2005–2019

    Article  PubMed  CAS  Google Scholar 

  38. Wong PC, Cleveland DW (1990) Characterization of dominant and recessive assembly-defective mutations in mouse neurofilament NF-M. J Cell Biol 111:1987–2003

    Article  PubMed  CAS  Google Scholar 

  39. Sihag RK, Nixon RA (1991) Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem 266:18861–18867

    PubMed  CAS  Google Scholar 

  40. Sihag RK, Jaffe H, Nixon RA et al (1999) Serine-23 is a major protein kinase A phosphorylation site on the amino-terminal head domain of the middle molecular mass subunit of neurofilament proteins. J Neurochem 72:491–499

    Article  PubMed  CAS  Google Scholar 

  41. Hisanaga S, Gonda Y, Inagaki M et al (1990) Effects of phosphorylation of the neurofilament L protein on filamentous structures. Cell Regul 1:237–248

    PubMed  CAS  Google Scholar 

  42. Gibb BJ, Brion JP, Brownlees J et al (1998) Neuropathological abnormalities in transgenic mice harbouring a phosphorylation mutant neurofilament transgene. J Neurochem 70:492–500

    Article  PubMed  CAS  Google Scholar 

  43. Mukai H, Toshimori M, Shibata H et al (1996) PKN associates and phosphorylates the head-rod domain of neurofilament protein. J Biol Chem 271:9816–9822

    Article  PubMed  CAS  Google Scholar 

  44. Dong DL, Xu ZS, Chevrier MR et al (1993) Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem 268:16679–16687

    PubMed  CAS  Google Scholar 

  45. Dong DL, Xu ZS, Hart GW et al (1996) Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J Biol Chem 271:20845–20852

    Article  PubMed  CAS  Google Scholar 

  46. Kim SK, Choi JH, Suh PG et al (2006) Pleckstrin homology domain of phospholipase C-gamma1 directly binds to 68-kDa neurofilament light chain. Exp Mol Med 38:265–272

    PubMed  CAS  Google Scholar 

  47. Kim SK, Kim H, Yang YR et al (2011) Phosphatidylinositol phosphates directly bind to neurofilament light chain (NF-L) for the regulation of NF-L self assembly. Exp Mol Med 43:153–160

    Article  PubMed  CAS  Google Scholar 

  48. Nguyen MD, Shu T, Sanada K et al (2004) A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat Cell Biol 6:595–608

    Article  PubMed  CAS  Google Scholar 

  49. Leterrier JF, Kas J, Hartwig J et al (1996) Mechanical effects of neurofilament cross-bridges. Modulation by phosphorylation, lipids, and interactions with F-actin. J Biol Chem 271:15687–15694

    Article  PubMed  CAS  Google Scholar 

  50. Rammensee S, Janmey PA, Bausch AR (2007) Mechanical and structural properties of in vitro neurofilament hydrogels. Eur Biophys J 36:661–668

    Article  PubMed  CAS  Google Scholar 

  51. Kreplak L, Bar H, Leterrier JF et al (2005) Exploring the mechanical behavior of single intermediate filaments. J Mol Biol 354:569–577

    Article  PubMed  CAS  Google Scholar 

  52. Myers MW, Lazzarini RA, Lee VM et al (1987) The human mid-size neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J 6:1617–1626

    PubMed  CAS  Google Scholar 

  53. Strausberg RL, Feingold EA, Grouse LH et al (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99:16899–16903

    Article  PubMed  Google Scholar 

  54. Lees JF, Shneidman PS, Skuntz SF et al (1988) The structure and organization of the human heavy neurofilament subunit (NF-H) and the gene encoding it. EMBO J 7:1947–1955

    PubMed  CAS  Google Scholar 

  55. Thyagarajan A, Strong MJ, Szaro BG (2007) Post-transcriptional control of neurofilaments in development and disease. Exp Cell Res 313:2088–2097

    Article  PubMed  CAS  Google Scholar 

  56. Escurat M, Djabali K, Gumpel M et al (1990) Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat. J Neurosci 10:764–784

    PubMed  CAS  Google Scholar 

  57. Oblinger MM, Wong J, Parysek LM (1989) Axotomy-induced changes in the expression of a type III neuronal intermediate filament gene. J Neurosci 9:3766–3775

    PubMed  CAS  Google Scholar 

  58. Carden MJ, Trojanowski JQ, Schlaepfer WW et al (1987) Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci 7:3489–3504

    PubMed  CAS  Google Scholar 

  59. Pachter JS, Liem RK (1984) The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve. Dev Biol 103:200–210

    Article  PubMed  CAS  Google Scholar 

  60. Shaw G, Osborn M, Weber K (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol 26:68–82

    PubMed  CAS  Google Scholar 

  61. Shaw G, Weber K (1982) Differential expression of neurofilament triplet proteins in brain development. Nature 298:277–279

    Article  PubMed  CAS  Google Scholar 

  62. Walker KL, Yoo HK, Undamatla J et al (2001) Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21:9655–9666

    PubMed  CAS  Google Scholar 

  63. Zhao Y, Szaro BG (1995) The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis. J Neurosci 15:4629–4640

    PubMed  CAS  Google Scholar 

  64. Cuenca N, Fernandez E, de Juan J et al (1987) Postnatal development of microtubules and neurofilaments in the rat optic nerve: a quantitative study. J Comp Neurol 263:613–617

    Article  PubMed  CAS  Google Scholar 

  65. Breen KC, Anderton BH (1991) Temporal expression of neurofilament polypeptides in differentiating neuroblastoma cells. Neuroreport 2:21–24

    Article  PubMed  CAS  Google Scholar 

  66. Giasson BI, Mushynski WE (1997) Study of proline-directed protein kinases involved in phosphorylation of the heavy neurofilament subunit. J Neurosci 17:9466–9472

    PubMed  CAS  Google Scholar 

  67. Elder GA, Friedrich VL Jr, Bosco P et al (1998) Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol 141:727–739

    Article  PubMed  CAS  Google Scholar 

  68. Zhu Q, Couillard-Despres S, Julien JP (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 148:299–316

    Article  PubMed  CAS  Google Scholar 

  69. Zecevic N, Milosevic A, Rakic S et al (1999) Early development and composition of the human primordial plexiform layer: an immunohistochemical study. J Comp Neurol 412:241–254

    Article  PubMed  CAS  Google Scholar 

  70. Sarnat HB, Flores-Sarnat L (2002) Cajal-Retzius and subplate neurons: their role in cortical development. Eur J Paediatr Neurol 6:91–97

    Article  PubMed  Google Scholar 

  71. Marin-Padilla M (1990) Three-dimensional structural organization of layer I of the human cerebral cortex: a Golgi study. J Comp Neurol 299:89–105

    Article  PubMed  CAS  Google Scholar 

  72. Radnikow G, Feldmeyer D, Lubke J (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J Neurosci 22:6908–6919

    PubMed  CAS  Google Scholar 

  73. Haynes RL, Borenstein NS, Desilva TM et al (2005) Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 484:156–167

    Article  PubMed  Google Scholar 

  74. Verney C, Derer P (1995) Cajal-Retzius neurons in human cerebral cortex at midgestation show immunoreactivity for neurofilament and calcium-binding proteins. J Comp Neurol 359:144–153

    Article  PubMed  CAS  Google Scholar 

  75. Goldstein ME, Weiss SR, Lazzarini RA et al (1988) mRNA levels of all three neurofilament proteins decline following nerve transection. Brain Res 427:287–291

    PubMed  CAS  Google Scholar 

  76. Oblinger MM, Lasek RJ (1988) Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells. J Neurosci 8:1747–1758

    PubMed  CAS  Google Scholar 

  77. Wong J, Oblinger MM (1987) Changes in neurofilament gene expression occur after axotomy of dorsal root ganglion neurons: an in situ hybridization study. Metab Brain Dis 2:291–303

    Article  PubMed  CAS  Google Scholar 

  78. Hoffman PN, Pollock SC, Striph GG (1993) Altered gene expression after optic nerve transection: reduced neurofilament expression as a general response to axonal injury. Exp Neurol 119:32–36

    Article  PubMed  CAS  Google Scholar 

  79. McKerracher L, Essagian C, Aguayo AJ (1993) Temporal changes in beta-tubulin and neurofilament mRNA levels after transection of adult rat retinal ganglion cell axons in the optic nerve. J Neurosci 13:2617–2626

    PubMed  CAS  Google Scholar 

  80. Mikucki SA, Oblinger MM (1991) Corticospinal neurons exhibit a novel pattern of cytoskeletal gene expression after injury. J Neurosci Res 30:213–225

    Article  PubMed  CAS  Google Scholar 

  81. Tetzlaff W, Alexander SW, Miller FD et al (1991) Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 11:2528–2544

    PubMed  CAS  Google Scholar 

  82. Hoffman PN, Lasek RJ (1980) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res 202:317–333

    Article  PubMed  CAS  Google Scholar 

  83. Hoffman PN, Thompson GW, Griffin JW et al (1985) Changes in neurofilament transport coincide temporally with alterations in the caliber of axons in regenerating motor fibers. J Cell Biol 101:1332–1340

    Article  PubMed  CAS  Google Scholar 

  84. Hoffman PN, Cleveland DW (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc Natl Acad Sci U S A 85:4530–4533

    Article  PubMed  CAS  Google Scholar 

  85. Muma NA, Hoffman PN, Slunt HH et al (1990) Alterations in levels of mRNAs coding for neurofilament protein subunits during regeneration. Exp Neurol 107:230–235

    Article  PubMed  CAS  Google Scholar 

  86. Wong J, Oblinger MM (1990) A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons. J Neurosci 10:2215–2222

    PubMed  CAS  Google Scholar 

  87. Jiang YQ, Pickett J, Oblinger MM (1994) Comparison of changes in beta-tubulin and NF gene expression in rat DRG neurons under regeneration-permissive and regeneration-prohibitive conditions. Brain Res 637:233–241

    Article  PubMed  CAS  Google Scholar 

  88. Tetzlaff W, Bisby MA, Kreutzberg GW (1988) Changes in cytoskeletal proteins in the rat facial nucleus following axotomy. J Neurosci 8:3181–3189

    PubMed  CAS  Google Scholar 

  89. Jacobs AJ, Swain GP, Snedeker JA et al (1997) Recovery of neurofilament expression selectively in regenerating reticulospinal neurons. J Neurosci 17:5206–5220

    PubMed  CAS  Google Scholar 

  90. Zhang G, Jin L, Selzer ME (2011) Assembly properties of lamprey neurofilament subunits and their expression after spinal cord transection. J Comp Neurol 519:3657–3671

    Article  PubMed  CAS  Google Scholar 

  91. Gervasi C, Thyagarajan A, Szaro BG (2003) Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. J Comp Neurol 461:262–275

    Article  PubMed  CAS  Google Scholar 

  92. Toth C, Shim SY, Wang J et al (2008) Ndel1 promotes axon regeneration via intermediate filaments. PLoS One 3:e2014

    Article  PubMed  CAS  Google Scholar 

  93. Previtali SC, Zerega B, Sherman DL et al (2003) Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet 12:1713–1723

    Article  PubMed  CAS  Google Scholar 

  94. Grant P, Pant HC (2000) Neurofilament protein synthesis and phosphorylation. J Neurocytol 29:843–872

    Article  PubMed  CAS  Google Scholar 

  95. Sihag RK, Inagaki M, Yamaguchi T et al (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109

    Article  PubMed  CAS  Google Scholar 

  96. Goldstein ME, Sternberger LA, Sternberger NH (1987) Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H). J Neuroimmunol 14:135–148

    Article  PubMed  CAS  Google Scholar 

  97. Jones SM, Williams RC Jr (1982) Phosphate content of mammalian neurofilaments. J Biol Chem 257:9902–9905

    PubMed  CAS  Google Scholar 

  98. Lee VM, Otvos L Jr, Carden MJ et al (1988) Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci U S A 85:1998–2002

    Article  PubMed  CAS  Google Scholar 

  99. Pant HC, Veeranna (1995) Neurofilament phosphorylation. Biochem Cell Biol 73:575–592

    Google Scholar 

  100. Glicksman MA, Soppet D, Willard MB (1987) Posttranslational modification of neurofilament polypeptides in rabbit retina. J Neurobiol 18:167–196

    Article  PubMed  CAS  Google Scholar 

  101. Nixon RA, Paskevich PA, Sihag RK et al (1994) Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 126:1031–1046

    Article  PubMed  CAS  Google Scholar 

  102. Oblinger MM, Brady ST, McQuarrie IG et al (1987) Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurosci 7:453–462

    PubMed  CAS  Google Scholar 

  103. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80:6126–6130

    Article  PubMed  CAS  Google Scholar 

  104. Sihag RK, Jeng AY, Nixon RA (1988) Phosphorylation of neurofilament proteins by protein kinase C. FEBS Lett 233:181–185

    Article  PubMed  CAS  Google Scholar 

  105. Sihag RK, Nixon RA (1989) In vivo phosphorylation of distinct domains of the 70-kilodalton neurofilament subunit involves different protein kinases. J Biol Chem 264:457–464

    PubMed  CAS  Google Scholar 

  106. Sihag RK, Nixon RA (1990) Phosphorylation of the amino-terminal head domain of the middle molecular mass 145-kDa subunit of neurofilaments. Evidence for regulation by second messenger-dependent protein kinases. J Biol Chem 265:4166–4171

    PubMed  CAS  Google Scholar 

  107. Nixon RA, Lewis SE (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J Biol Chem 261:16298–16301

    PubMed  CAS  Google Scholar 

  108. Nixon RA, Lewis SE, Dahl D et al (1989) Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport. Brain Res Mol Brain Res 5:93–108

    Article  PubMed  CAS  Google Scholar 

  109. Nixon RA, Lewis SE, Marotta CA (1987) Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons. J Neurosci 7:1145–1158

    PubMed  CAS  Google Scholar 

  110. Hashimoto R, Nakamura Y, Goto H et al (1998) Domain- and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem Biophys Res Commun 245:407–411

    Article  PubMed  CAS  Google Scholar 

  111. Hashimoto R, Nakamura Y, Komai S et al (2000) Site-specific phosphorylation of neurofilament-L is mediated by calcium/calmodulin-dependent protein kinase II in the apical dendrites during long-term potentiation. J Neurochem 75:373–382

    Article  PubMed  CAS  Google Scholar 

  112. Ackerley S, Thornhill P, Grierson AJ et al (2003) Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161:489–495

    Article  PubMed  CAS  Google Scholar 

  113. Archer DR, Watson DF, Griffin JW (1994) Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion. J Neurochem 62:1119–1125

    Article  PubMed  CAS  Google Scholar 

  114. Jung C, Yabe JT, Lee S et al (2000) Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extensively phosphorylated subunits in situ. Cell Motil Cytoskeleton 47:120–129

    Article  PubMed  CAS  Google Scholar 

  115. Lewis SE, Nixon RA (1988) Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J Cell Biol 107:2689–2701

    Article  PubMed  CAS  Google Scholar 

  116. Nixon RA, Brown BA, Marotta CA (1982) Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons. J Cell Biol 94:150–158

    Article  PubMed  CAS  Google Scholar 

  117. Nixon RA, Logvinenko KB (1986) Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J Cell Biol 102:647–659

    Article  PubMed  CAS  Google Scholar 

  118. Li BS, Veeranna, Gu J et al (1999) Activation of mitogen-activated protein kinases (Erk1 and Erk2) cascade results in phosphorylation of NF-M tail domains in transfected NIH 3T3 cells. Eur J Biochem 262:211–7

    Article  PubMed  CAS  Google Scholar 

  119. Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  120. Li BS, Veeranna, Grant P et al (1999) Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC12 cells. Brain Res Mol Brain Res 70:84–91

    Article  PubMed  CAS  Google Scholar 

  121. Li BS, Zhang L, Gu J et al (2000) Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci 20:6055–6062

    PubMed  CAS  Google Scholar 

  122. de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463

    Article  PubMed  Google Scholar 

  123. Hsieh ST, Crawford TO, Griffin JW (1994) Neurofilament distribution and organization in the myelinated axons of the peripheral nervous system. Brain Res 642:316–326

    Article  PubMed  CAS  Google Scholar 

  124. Mata M, Kupina N, Fink DJ (1992) Phosphorylation-dependent neurofilament epitopes are reduced at the node of Ranvier. J Neurocytol 21:199–210

    Article  PubMed  CAS  Google Scholar 

  125. Reles A, Friede RL (1991) Axonal cytoskeleton at the nodes of Ranvier. J Neurocytol 20:450–458

    Article  PubMed  CAS  Google Scholar 

  126. Dashiell SM, Tanner SL, Pant HC et al (2002) Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. J Neurochem 81:1263–1272

    Article  PubMed  CAS  Google Scholar 

  127. Yin X, Crawford TO, Griffin JW et al (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    PubMed  CAS  Google Scholar 

  128. Bajaj NP, Miller CC (1997) Phosphorylation of neurofilament heavy-chain side-arm fragments by cyclin-dependent kinase-5 and glycogen synthase kinase-3alpha in transfected cells. J Neurochem 69:737–743

    Article  PubMed  CAS  Google Scholar 

  129. Guidato S, Tsai LH, Woodgett J et al (1996) Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. J Neurochem 66:1698–1706

    Article  PubMed  CAS  Google Scholar 

  130. Hisanaga S, Uchiyama M, Hosoi T et al (1995) Porcine brain neurofilament-H tail domain kinase: its identification as cdk5/p26 complex and comparison with cdc2/cyclin B kinase. Cell Motil Cytoskeleton 31:283–297

    Article  PubMed  CAS  Google Scholar 

  131. Lew J, Winkfein RJ, Paudel HK et al (1992) Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J Biol Chem 267:25922–25926

    PubMed  CAS  Google Scholar 

  132. Sharma M, Sharma P, Pant HC (1999) CDK-5-mediated neurofilament phosphorylation in SHSY5Y human neuroblastoma cells. J Neurochem 73:79–86

    Article  PubMed  CAS  Google Scholar 

  133. Shetty KT, Link WT, Pant HC (1993) cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: isolation and characterization. Proc Natl Acad Sci U S A 90:6844–6848

    Article  PubMed  CAS  Google Scholar 

  134. Sun D, Leung CL, Liem RK (1996) Phosphorylation of the high molecular weight neurofilament protein (NF-H) by Cdk5 and p35. J Biol Chem 271:14245–14251

    Article  PubMed  CAS  Google Scholar 

  135. Veeranna, Amin ND, Ahn NG et al (1998) Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 18:4008–21

    PubMed  CAS  Google Scholar 

  136. Miyasaka H, Okabe S, Ishiguro K et al (1993) Interaction of the tail domain of high molecular weight subunits of neurofilaments with the COOH-terminal region of tubulin and its regulation by tau protein kinase II. J Biol Chem 268:22695–22702

    PubMed  CAS  Google Scholar 

  137. Brownlees J, Yates A, Bajaj NP et al (2000) Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J Cell Sci 113(Pt 3):401–407

    PubMed  CAS  Google Scholar 

  138. Guan RJ, Khatra BS, Cohlberg JA (1991) Phosphorylation of bovine neurofilament proteins by protein kinase FA (glycogen synthase kinase 3). J Biol Chem 266:8262–8267

    PubMed  CAS  Google Scholar 

  139. Ackerley S, Grierson AJ, Banner S et al (2004) p38alpha stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol Cell Neurosci 26:354–364

    Article  PubMed  CAS  Google Scholar 

  140. Sasaki T, Gotow T, Shiozaki M et al (2006) Aggregate formation and phosphorylation of neurofilament-L Pro22 Charcot-Marie-Tooth disease mutants. Hum Mol Genet 15:943–952

    Article  PubMed  CAS  Google Scholar 

  141. Giasson BI, Mushynski WE (1996) Aberrant stress-induced phosphorylation of perikaryal neurofilaments. J Biol Chem 271:30404–30409

    Article  PubMed  CAS  Google Scholar 

  142. O’Ferrall EK, Robertson J, Mushynski WE (2000) Inhibition of aberrant and constitutive phosphorylation of the high-molecular-mass neurofilament subunit by CEP-1347 (KT7515), an inhibitor of the stress-activated protein kinase signaling pathway. J Neurochem 75:2358–2367

    Article  PubMed  Google Scholar 

  143. Bennett GS, Quintana R (1997) Identification of Ser-Pro and Thr-Pro phosphorylation sites in chicken neurofilament-M tail domain. J Neurochem 68:534–543

    Article  PubMed  CAS  Google Scholar 

  144. Dosemeci A, Floyd CC, Pant HC (1990) Characterization of neurofilament-associated protein kinase activities from bovine spinal cord. Cell Mol Neurobiol 10:369–382

    Article  PubMed  CAS  Google Scholar 

  145. Floyd CC, Grant P, Gallant PE et al (1991) Principal neurofilament-associated protein kinase in squid axoplasm is related to casein kinase I. J Biol Chem 266:4987–4994

    PubMed  CAS  Google Scholar 

  146. Hollander BA, Bennett GS, Shaw G (1996) Localization of sites in the tail domain of the middle molecular mass neurofilament subunit phosphorylated by a neurofilament-associated kinase and by casein kinase I. J Neurochem 66:412–420

    Article  PubMed  CAS  Google Scholar 

  147. Link WT, Dosemeci A, Floyd CC et al (1993) Bovine neurofilament-enriched preparations contain kinase activity similar to casein kinase I–neurofilament phosphorylation by casein kinase I (CKI). Neurosci Lett 151:89–93

    Article  PubMed  CAS  Google Scholar 

  148. Nakamura Y, Hashimoto R, Kashiwagi Y et al (1999) Casein kinase II is responsible for phosphorylation of NF-L at Ser-473. FEBS Lett 455:83–86

    Article  PubMed  CAS  Google Scholar 

  149. Xu ZS, Liu WS, Willard M (1990) Identification of serine 473 as a major phosphorylation site in the neurofilament polypeptide NF-L. J Neurosci 10:1838–1846

    PubMed  CAS  Google Scholar 

  150. Zheng YL, Li BS, Veeranna et al (2003) Phosphorylation of the head domain of neurofilament protein (NF-M): a factor regulating topographic phosphorylation of NF-M tail domain KSP sites in neurons. J Biol Chem 278:24026–24032

    Article  PubMed  CAS  Google Scholar 

  151. Leterrier JF, Eyer J (1987) Properties of highly viscous gels formed by neurofilaments in vitro. A possible consequence of a specific inter-filament cross-bridging. Biochem J 245:93–101

    PubMed  CAS  Google Scholar 

  152. Pant HC (1988) Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain. Biochem J 256:665–668

    PubMed  CAS  Google Scholar 

  153. Sacher MG, Athlan ES, Mushynski WE (1994) Increased phosphorylation of the amino-terminal domain of the low molecular weight neurofilament subunit in okadaic acid-treated neurons. J Biol Chem 269:18480–18484

    PubMed  CAS  Google Scholar 

  154. Saito T, Shima H, Osawa Y et al (1995) Neurofilament-associated protein phosphatase 2A: its possible role in preserving neurofilaments in filamentous states. Biochemistry 34:7376–7384

    Article  PubMed  CAS  Google Scholar 

  155. Strack S, Westphal RS, Colbran RJ et al (1997) Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain Res 49:15–28

    Article  PubMed  CAS  Google Scholar 

  156. Veeranna, Shetty KT, Link WT et al (1995) Neuronal cyclin-dependent kinase-5 phosphorylation sites in neurofilament protein (NF-H) are dephosphorylated by protein phosphatase 2A. J Neurochem 64:2681–90

    Article  PubMed  CAS  Google Scholar 

  157. Schechter R, Abboud M, Johnson G (1999) Brain endogenous insulin effects on neurite growth within fetal rat neuron cell cultures. Brain Res Dev Brain Res 116:159–167

    Article  PubMed  CAS  Google Scholar 

  158. Schechter R, Yanovitch T, Abboud M et al (1998) Effects of brain endogenous insulin on neurofilament and MAPK in fetal rat neuron cell cultures. Brain Res 808:270–278

    Article  PubMed  CAS  Google Scholar 

  159. Schechter R, Beju D, Miller KE (2005) The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse. Biochem Biophys Res Commun 334:979–986

    Article  PubMed  CAS  Google Scholar 

  160. Slawson C, Hart GW (2003) Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr Opin Struct Biol 13:631–636

    Article  PubMed  CAS  Google Scholar 

  161. Ludemann N, Clement A, Hans VH et al (2005) O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J Biol Chem 280:31648–31658

    Article  PubMed  CAS  Google Scholar 

  162. Ryle C, Leow CK, Donaghy M (1997) Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 20:577–584

    Article  PubMed  CAS  Google Scholar 

  163. Chou SM, Wang HS, Taniguchi A et al (1998) Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol Med 4:324–332

    PubMed  CAS  Google Scholar 

  164. Suzuki Y, Tanaka M, Sohmiya M et al (2005) Identification of nitrated proteins in the normal rat brain using a proteomics approach. Neurol Res 27:630–633

    Article  PubMed  CAS  Google Scholar 

  165. Chou SM, Wang HS, Taniguchi A (1996) Role of SOD-1 and nitric oxide/cyclic GMP cascade on neurofilament aggregation in ALS/MND. J Neurol Sci 139(Suppl):16–26

    Article  PubMed  Google Scholar 

  166. Crow JP, Ye YZ, Strong M et al (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem 69:1945–1953

    Article  PubMed  CAS  Google Scholar 

  167. Reynolds MR, Berry RW, Binder LI (2007) Nitration in neurodegeneration: deciphering the “Hows” “nYs”. Biochemistry 46:7325–7336

    Article  PubMed  CAS  Google Scholar 

  168. Troncoso JC, Costello AC, Kim JH et al (1995) Metal-catalyzed oxidation of bovine neurofilaments in vitro. Free Radic Biol Med 18:891–899

    Article  PubMed  CAS  Google Scholar 

  169. Kim NH, Jeong MS, Choi SY et al (2004) Oxidative modification of neurofilament-L by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Biochimie 86:553–559

    Article  PubMed  CAS  Google Scholar 

  170. Gou JP, Leterrier JF (1995) Possible involvement of ubiquitination in neurofilament degradation. Biochem Biophys Res Commun 217:529–538

    Article  PubMed  CAS  Google Scholar 

  171. Hoffman PN, Lasek RJ (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366

    Article  PubMed  CAS  Google Scholar 

  172. Schlaepfer WW (1974) Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res 69:203–215

    Article  PubMed  CAS  Google Scholar 

  173. Millecamps S, Gowing G, Corti O et al (2007) Conditional NF-L transgene expression in mice for in vivo analysis of turnover and transport rate of neurofilaments. J Neurosci 27:4947–4956

    Article  PubMed  CAS  Google Scholar 

  174. Eagles PA, Gilbert DS, Maggs A (1981) The location of phosphorylation sites and Ca2+−dependent proteolytic cleavage sites on the major neurofilament polypeptides from Myxicola infundibulum. Biochem J 199:101–111

    PubMed  CAS  Google Scholar 

  175. Gallant PE, Pant HC, Pruss RM et al (1986) Calcium-activated proteolysis of neurofilament proteins in the squid giant neuron. J Neurochem 46:1573–1581

    Article  PubMed  CAS  Google Scholar 

  176. Pant HC, Gainer H (1980) Properties of a calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins. J Neurobiol 11:1–12

    Article  PubMed  CAS  Google Scholar 

  177. Perlmutter LS, Gall C, Baudry M et al (1990) Distribution of calcium-activated protease calpain in the rat brain. J Comp Neurol 296:269–276

    Article  PubMed  CAS  Google Scholar 

  178. Schlaepfer WW, Lee C, Lee VM et al (1985) An immunoblot study of neurofilament degradation in situ and during calcium-activated proteolysis. J Neurochem 44:502–509

    Article  PubMed  CAS  Google Scholar 

  179. Roots BI (1983) Neurofilament accumulation induced in synapses by leupeptin. Science 221:971–972

    Article  PubMed  CAS  Google Scholar 

  180. Schlaepfer WW (1971) Experimental alterations of neurofilaments and neurotubules by calcium and other ions. Exp Cell Res 67:73–80

    Article  PubMed  CAS  Google Scholar 

  181. Murachi T (1990) Calpain and calpastatin. Rinsho Byori 38:337–346

    PubMed  CAS  Google Scholar 

  182. Murachi T, Tanaka K, Hatanaka M et al (1980) Intracellular Ca2+−dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul 19:407–424

    Article  PubMed  CAS  Google Scholar 

  183. Hamakubo T, Kannagi R, Murachi T et al (1986) Distribution of calpains I and II in rat brain. J Neurosci 6:3103–3111

    PubMed  CAS  Google Scholar 

  184. Nixon RA, Brown BA, Marotta CA (1983) Limited proteolytic modification of a neurofilament protein involves a proteinase activated by endogenous levels of calcium. Brain Res 275:384–388

    Article  PubMed  CAS  Google Scholar 

  185. Nelson WJ, Traub P (1982) Intermediate (10 nm) filament proteins and the Ca2+−activated proteinase specific for vimentin and desmin in the cells from fish to man: an example of evolutionary conservation. J Cell Sci 57:25–49

    PubMed  CAS  Google Scholar 

  186. Gitler D, Spira ME (1998) Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20:1123–1135

    Article  PubMed  CAS  Google Scholar 

  187. Chin TK, Eagles PA, Maggs A (1983) The proteolytic digestion of ox neurofilaments with trypsin and alpha-chymotrypsin. Biochem J 215:239–252

    PubMed  CAS  Google Scholar 

  188. Chin TK, Harding SE, Eagles PA (1989) Characterization of two proteolytically derived soluble polypeptides from the neurofilament triplet components NFM and NFH. Biochem J 264:53–60

    PubMed  CAS  Google Scholar 

  189. Malik MN, Fenko MD, Iqbal K et al (1983) Purification and characterization of two forms of Ca2+−activated neutral protease from calf brain. J Biol Chem 258:8955–8962

    PubMed  CAS  Google Scholar 

  190. Banay-Schwartz M, Dahl D, Hui KS et al (1987) The breakdown of the individual neurofilament proteins by cathepsin D. Neurochem Res 12:361–367

    Article  PubMed  CAS  Google Scholar 

  191. Nixon RA, Marotta CA (1984) Degradation of neurofilament proteins by purified human brain cathepsin D. J Neurochem 43:507–516

    Article  PubMed  CAS  Google Scholar 

  192. Suzuki H, Takeda M, Nakamura Y et al (1988) Neurofilament degradation by bovine brain cathepsin D. Neurosci Lett 89:240–245

    Article  PubMed  CAS  Google Scholar 

  193. Traub P, Vorgias CE, Nelson WJ (1985) Interaction in vitro of the neurofilament triplet proteins from porcine spinal cord with natural RNA and DNA. Mol Biol Rep 10:129–136

    Article  PubMed  CAS  Google Scholar 

  194. Wang Q, Tolstonog GV, Shoeman R et al (2001) Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins. Biochemistry 40:10342–10349

    Article  PubMed  CAS  Google Scholar 

  195. Goldstein ME, Sternberger NH, Sternberger LA (1987) Phosphorylation protects neurofilaments against proteolysis. J Neuroimmunol 14:149–160

    Article  PubMed  CAS  Google Scholar 

  196. Bizzi A, Crane RC, Autilio-Gambetti L et al (1984) Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport. J Neurosci 4:722–731

    PubMed  CAS  Google Scholar 

  197. Troncoso JC, Sternberger NH, Sternberger LA et al (1986) Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum. Brain Res 364:295–300

    Article  PubMed  CAS  Google Scholar 

  198. Nixon RA, Clarke JF, Logvinenko KB et al (1990) Aluminum inhibits calpain-mediated proteolysis and induces human neurofilament proteins to form protease-resistant high molecular weight complexes. J Neurochem 55:1950–1959

    Article  PubMed  CAS  Google Scholar 

  199. Wang Q, Song F, Zhang C et al (2011) Carboxyl-terminus of Hsc70 interacting protein mediates 2,5-hexanedione-induced neurofilament medium chain degradation. Biochem Pharmacol 81:793–799

    Article  PubMed  CAS  Google Scholar 

  200. Banik NL, Matzelle DC, Gantt-Wilford G et al (1997) Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury. Brain Res 752:301–306

    Article  PubMed  CAS  Google Scholar 

  201. Posmantur R, Hayes RL, Dixon CE et al (1994) Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 11:533–545

    Article  PubMed  CAS  Google Scholar 

  202. Bahmanyar S, Moreau-Dubois MC, Brown P et al (1983) Serum antibodies to neurofilament antigens in patients with neurological and other diseases and in healthy controls. J Neuroimmunol 5:191–196

    Article  PubMed  CAS  Google Scholar 

  203. Elizan TS, Casals J, Yahr MD (1983) Antineurofilament antibodies in postencephalitic and idiopathic Parkinson’s disease. J Neurol Sci 59:341–347

    Article  PubMed  CAS  Google Scholar 

  204. Stefansson K, Marton LS, Dieperink ME et al (1985) Circulating autoantibodies to the 200,000-dalton protein of neurofilaments in the serum of healthy individuals. Science 228:1117–1119

    Article  PubMed  CAS  Google Scholar 

  205. Toh BH, Gibbs CJ Jr, Gajdusek DC et al (1985) The 200- and 150-kDa neurofilament proteins react with IgG autoantibodies from chimpanzees with kuru or Creutzfeldt-Jakob disease; a 62-kDa neurofilament-associated protein reacts with sera from sheep with natural scrapie. Proc Natl Acad Sci U S A 82:3894–3896

    Article  PubMed  CAS  Google Scholar 

  206. Corbo M, Hays AP (1992) Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J Neuropathol Exp Neurol 51:531–537

    Article  PubMed  CAS  Google Scholar 

  207. Hirano A (1991) Cytopathology of amyotrophic lateral sclerosis. Adv Neurol 56:91–101

    PubMed  CAS  Google Scholar 

  208. Hill WD, Arai M, Cohen JA et al (1993) Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol 329:328–336

    Article  PubMed  CAS  Google Scholar 

  209. Leigh PN, Dodson A, Swash M et al (1989) Cytoskeletal abnormalities in motor neuron disease. An immunocytochemical study. Brain 112(Pt 2):521–535

    Article  PubMed  Google Scholar 

  210. Chou SM, Hartmann HA (1965) Electron microscopy of focal neuroaxonal lesions produced by beta-beta-iminodipropionitrile (IDPN) in rats. I. The advanced lesions. Acta Neuropathol 4:590–603

    Article  PubMed  CAS  Google Scholar 

  211. Gold BG, Griffin JW, Price DL (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. J Neurosci 5:1755–1768

    PubMed  CAS  Google Scholar 

  212. Kadota T, Kadota K (1978) Neurofilament hypertrophy induced in the rabbit spinal cord after intracisternal injection of aluminum chloride (author’s transl). J Toxicol Sci 3:57–67

    Article  PubMed  CAS  Google Scholar 

  213. Papasozomenos SC, Autilio-Gambetti L, Gambetti P (1981) Reorganization of axoplasmic organelles following beta, beta′-iminodipropionitrile administration. J Cell Biol 91:866–871

    Article  PubMed  CAS  Google Scholar 

  214. Gschwend TP, Krueger SR, Kozlov SV et al (1997) Neurotrypsin, a novel multidomain serine protease expressed in the nervous system. Mol Cell Neurosci 9:207–219

    Article  PubMed  CAS  Google Scholar 

  215. Scarisbrick IA, Isackson PJ, Ciric B et al (2001) MSP, a trypsin-like serine protease, is abundantly expressed in the human nervous system. J Comp Neurol 431:347–361

    Article  PubMed  CAS  Google Scholar 

  216. Yamashiro K, Tsuruoka N, Kodama S et al (1997) Molecular cloning of a novel trypsin-like serine protease (neurosin) preferentially expressed in brain. Biochim Biophys Acta 1350:11–14

    Article  PubMed  CAS  Google Scholar 

  217. Chou SM, Taniguchi A, Wang HS et al (1998) Serpin=serine protease-like complexes within neurofilament conglomerates of motoneurons in amyotrophic lateral sclerosis. J Neurol Sci 160(Suppl 1):S73–S79

    Article  PubMed  CAS  Google Scholar 

  218. Tsuji T, Shimohama S, Kimura J et al (1998) m-Calpain (calcium-activated neutral proteinase) in Alzheimer’s disease brains. Neurosci Lett 248:109–112

    Article  PubMed  CAS  Google Scholar 

  219. Fasani F, Bocquet A, Robert P et al (2004) The amount of neurofilaments aggregated in the cell body is controlled by their increased sensitivity to trypsin-like proteases. J Cell Sci 117:861–869

    Article  PubMed  CAS  Google Scholar 

  220. Eyer J, Peterson A (1994) Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 12:389–405

    Article  PubMed  CAS  Google Scholar 

  221. Aamodt EJ, Williams RC Jr (1984) Association of microtubules and neurofilaments in vitro is not mediated by ATP. Biochemistry 23:6031–6035

    Article  PubMed  CAS  Google Scholar 

  222. Flynn G, Purich DL (1987) GTP regeneration influences interactions of microtubules, neurofilaments, and microtubule-associated proteins in vitro. J Biol Chem 262:15443–15447

    PubMed  CAS  Google Scholar 

  223. Heimann R, Shelanski ML, Liem RK (1985) Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein. J Biol Chem 260:12160–12166

    PubMed  CAS  Google Scholar 

  224. Leterrier JF, Wong J, Liem RK et al (1984) Promotion of microtubule assembly by neurofilament-associated microtubule-associated proteins. J Neurochem 43:1385–1391

    Article  PubMed  CAS  Google Scholar 

  225. Minami Y, Endo S, Sakai H (1984) Participation of 200 K or 150 K subunit of neurofilament in construction of the filament core with 70 K subunit and promotion of tubulin polymerization by incorporated 200 K subunit. J Biochem 96:1481–1490

    PubMed  CAS  Google Scholar 

  226. Minami Y, Sakai H (1983) Network formation by neurofilament-induced polymerization of tubulin: 200 K subunit of neurofilament triplet promotes nucleation of tubulin polymerization and enhances microtubule assembly. J Biochem 94:2023–2033

    PubMed  CAS  Google Scholar 

  227. Runge MS, Laue TM, Yphantis DA et al (1981) ATP-induced formation of an associated complex between microtubules and neurofilaments. Proc Natl Acad Sci U S A 78:1431–1435

    Article  PubMed  CAS  Google Scholar 

  228. Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142

    Article  PubMed  CAS  Google Scholar 

  229. Hisanaga S, Hirokawa N (1989) The effects of dephosphorylation on the structure of the projections of neurofilament. J Neurosci 9:959–966

    PubMed  CAS  Google Scholar 

  230. Bocquet A, Berges R, Frank R et al (2009) Neurofilaments bind tubulin and modulate its polymerization. J Neurosci 29:11043–11054

    Article  PubMed  CAS  Google Scholar 

  231. Kaech S, Ludin B, Matus A (1996) Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 17:1189–1199

    Article  PubMed  CAS  Google Scholar 

  232. Hirokawa N, Hisanaga S, Shiomura Y (1988) MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies. J Neurosci 8:2769–2779

    PubMed  CAS  Google Scholar 

  233. Denarier E, Fourest-Lieuvin A, Bosc C et al (1998) Nonneuronal isoforms of STOP protein are responsible for microtubule cold stability in mammalian fibroblasts. Proc Natl Acad Sci U S A 95:6055–6060

    Article  PubMed  CAS  Google Scholar 

  234. Job D, Rauch CT, Fischer EH et al (1982) Recycling of cold-stable microtubules: evidence that cold stability is due to substoichiometric polymer blocks. Biochemistry 21:509–515

    Article  PubMed  CAS  Google Scholar 

  235. Job D, Fischer EH, Margolis RL (1981) Rapid disassembly of cold-stable microtubules by calmodulin. Proc Natl Acad Sci U S A 78:4679–4682

    Article  PubMed  CAS  Google Scholar 

  236. Margolis RL, Rauch CT, Job D (1986) Purification and assay of a 145-kDa protein (STOP145) with microtubule-stabilizing and motility behavior. Proc Natl Acad Sci U S A 83:639–643

    Article  PubMed  CAS  Google Scholar 

  237. Bosc C, Cronk JD, Pirollet F et al (1996) Cloning, expression, and properties of the microtubule-stabilizing protein STOP. Proc Natl Acad Sci U S A 93:2125–2130

    Article  PubMed  CAS  Google Scholar 

  238. Pirollet F, Derancourt J, Haiech J et al (1992) Ca(2+)-calmodulin regulated effectors of microtubule stability in bovine brain. Biochemistry 31:8849–8855

    Article  PubMed  CAS  Google Scholar 

  239. Pirollet F, Rauch CT, Job D et al (1989) Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and nonneuronal cell extracts. Biochemistry 28:835–842

    Article  PubMed  CAS  Google Scholar 

  240. Guillaud L, Bosc C, Fourest-Lieuvin A et al (1998) STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. J Cell Biol 142:167–179

    Article  PubMed  CAS  Google Scholar 

  241. Letournel F, Bocquet A, Dubas F et al (2003) Stable tubule only polypeptides (STOP) proteins co-aggregate with spheroid neurofilaments in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 62:1211–1219

    PubMed  CAS  Google Scholar 

  242. Shah JV, Flanagan LA, Janmey PA et al (2000) Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 11:3495–3508

    PubMed  CAS  Google Scholar 

  243. Theiss C, Napirei M, Meller K (2005) Impairment of anterograde and retrograde neurofilament transport after anti-kinesin and anti-dynein antibody microinjection in chicken dorsal root ganglia. Eur J Cell Biol 84:29–43

    Article  PubMed  CAS  Google Scholar 

  244. Wagner OI, Ascano J, Tokito M et al (2004) The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Mol Biol Cell 15:5092–5100

    Article  PubMed  CAS  Google Scholar 

  245. Yabe JT, Jung C, Chan WK et al (2000) Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motil Cytoskeleton 45:249–262

    Article  PubMed  CAS  Google Scholar 

  246. Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 112(Pt 21):3799–3814

    PubMed  CAS  Google Scholar 

  247. Motil J, Chan WK, Dubey M et al (2006) Dynein mediates retrograde neurofilament transport within axons and anterograde delivery of NFs from perikarya into axons: regulation by multiple phosphorylation events. Cell Motil Cytoskeleton 63:266–286

    Article  PubMed  CAS  Google Scholar 

  248. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  PubMed  CAS  Google Scholar 

  249. Mehta AD, Rock RS, Rief M et al (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    Article  PubMed  CAS  Google Scholar 

  250. Yoshimura A, Fujii R, Watanabe Y et al (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16:2345–2351

    Article  PubMed  CAS  Google Scholar 

  251. Rao MV, Engle LJ, Mohan PS et al (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159:279–290

    Article  PubMed  CAS  Google Scholar 

  252. Rao MV, Mohan PS, Kumar A et al (2011) The myosin Va head domain binds to the neurofilament-L rod and modulates ­endoplasmic reticulum (ER) content and distribution within axons. PLoS One 6:e17087

    Article  PubMed  CAS  Google Scholar 

  253. Errante LD, Wiche G, Shaw G (1994) Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system. J Neurosci Res 37:515–528

    Article  PubMed  CAS  Google Scholar 

  254. Yang Y, Dowling J, Yu QC et al (1996) An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86:655–665

    Article  PubMed  CAS  Google Scholar 

  255. Leung CL, Sun D, Liem RK (1999) The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons. J Cell Biol 144:435–446

    Article  PubMed  CAS  Google Scholar 

  256. Guo L, Degenstein L, Dowling J et al (1995) Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81:233–243

    Article  PubMed  CAS  Google Scholar 

  257. Brown A, Bernier G, Mathieu M et al (1995) The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat Genet 10:301–306

    Article  PubMed  CAS  Google Scholar 

  258. Eyer J, Cleveland DW, Wong PC et al (1998) Pathogenesis of two axonopathies does not require axonal neurofilaments. Nature 391:584–587

    Article  PubMed  CAS  Google Scholar 

  259. Yang Y, Bauer C, Strasser G et al (1999) Integrators of the cytoskeleton that stabilize microtubules. Cell 98:229–238

    Article  PubMed  CAS  Google Scholar 

  260. Leung CL, Zheng M, Prater SM et al (2001) The BPAG1 locus: alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 154:691–697

    Article  PubMed  CAS  Google Scholar 

  261. Young KG, Kothary R (2007) Dystonin/Bpag1–a link to what? Cell Motil Cytoskeleton 64:897–905

    Article  PubMed  CAS  Google Scholar 

  262. Metuzals J, Mushynski WE (1974) Electron microscope and experimental investigations of the neurofilamentous network in Deiters’ neurons. Relationship with the cell surface and nuclear pores. J Cell Biol 61:701–722

    Article  PubMed  CAS  Google Scholar 

  263. Traub P, Perides G, Kuhn S et al (1987) Interaction in vitro of non-epithelial intermediate filament proteins with histones. Z Naturforsch C 42:47–63

    PubMed  CAS  Google Scholar 

  264. Goldenring JR, Lasher RS, Vallano ML et al (1986) Association of synapsin I with neuronal cytoskeleton. Identification in cytoskeletal preparations in vitro and immunocytochemical localization in brain of synapsin I. J Biol Chem 261:8495–8504

    PubMed  CAS  Google Scholar 

  265. Steiner JP, Ling E, Bennett V (1987) Nearest neighbor analysis for brain synapsin I. Evidence from in vitro reassociation assays for association with membrane protein(s) and the Mr = 68,000 neurofilament subunit. J Biol Chem 262:905–914

    PubMed  CAS  Google Scholar 

  266. Metuzals J, Fishman HM, Robb IA (1995) The neurofilamentous network-smooth endoplasmic reticulum complex in transected squid giant axon. Biol Bull 189:216–218

    PubMed  CAS  Google Scholar 

  267. Leterrier JF, Rusakov DA, Nelson BD et al (1994) Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microsc Res Tech 27:233–261

    Article  PubMed  CAS  Google Scholar 

  268. Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326

    Article  PubMed  CAS  Google Scholar 

  269. Perrot R, Julien JP (2009) Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J 23:3213–3225

    Article  PubMed  CAS  Google Scholar 

  270. Straube-West K, Loomis PA, Opal P et al (1996) Alterations in neural intermediate filament organization: functional implications and the induction of pathological changes related to motor neuron disease. J Cell Sci 109(Pt 9):2319–2329

    PubMed  CAS  Google Scholar 

  271. Szebenyi G, Smith GM, Li P et al (2002) Overexpression of neurofilament H disrupts normal cell structure and function. J Neurosci Res 68:185–198

    Article  PubMed  CAS  Google Scholar 

  272. Wagner OI, Lifshitz J, Janmey PA et al (2003) Mechanisms of mitochondria-neurofilament interactions. J Neurosci 23:9046–9058

    PubMed  CAS  Google Scholar 

  273. Friede RL, Samorajski T (1970) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 167:379–387

    Article  PubMed  CAS  Google Scholar 

  274. Hoffman PN, Griffin JW, Price DL (1984) Control of axonal caliber by neurofilament transport. J Cell Biol 99:705–714

    Article  PubMed  CAS  Google Scholar 

  275. Sanchez I, Hassinger L, Paskevich PA et al (1996) Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J Neurosci 16:5095–5105

    PubMed  CAS  Google Scholar 

  276. Ohara O, Gahara Y, Miyake T et al (1993) Neurofilament deficiency in quail caused by nonsense mutation in neurofilament-L gene. J Cell Biol 121:387–395

    Article  PubMed  CAS  Google Scholar 

  277. Yamasaki H, Bennett GS, Itakura C et al (1992) Defective expression of neurofilament protein subunits in hereditary hypotrophic axonopathy of quail. Lab Invest 66:734–743

    PubMed  CAS  Google Scholar 

  278. Yamasaki H, Itakura C, Mizutani M (1991) Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol 82:427–434

    Article  PubMed  CAS  Google Scholar 

  279. Cote F, Collard JF, Julien JP (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73:35–46

    Article  PubMed  CAS  Google Scholar 

  280. Perrot R, Lonchampt P, Peterson AC et al (2007) Axonal neurofilaments control multiple fiber properties but do not influence structure or spacing of nodes of Ranvier. J Neurosci 27:9573–9584

    Article  PubMed  CAS  Google Scholar 

  281. Monteiro MJ, Hoffman PN, Gearhart JD et al (1990) Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J Cell Biol 111:1543–1557

    Article  PubMed  CAS  Google Scholar 

  282. Xu Z, Marszalek JR, Lee MK et al (1996) Subunit composition of neurofilaments specifies axonal diameter. J Cell Biol 133:1061–1069

    Article  PubMed  CAS  Google Scholar 

  283. Nguyen MD, Lariviere RC, Julien JP (2000) Reduction of axonal caliber does not alleviate motor neuron disease caused by mutant superoxide dismutase 1. Proc Natl Acad Sci U S A 97:12306–12311

    Article  PubMed  CAS  Google Scholar 

  284. Meier J, Couillard-Despres S, Jacomy H et al (1999) Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice. J Neuropathol Exp Neurol 58:1099–1110

    Article  PubMed  CAS  Google Scholar 

  285. Elder GA, Friedrich VL Jr, Kang C et al (1998) Requirement of heavy neurofilament subunit in the development of axons with large calibers. J Cell Biol 143:195–205

    Article  PubMed  CAS  Google Scholar 

  286. Rao MV, Houseweart MK, Williamson TL et al (1998) Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol 143:171–181

    Article  PubMed  CAS  Google Scholar 

  287. Zhu Q, Lindenbaum M, Levavasseur F et al (1998) Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta, beta′-iminodipropionitrile. J Cell Biol 143:183–193

    Article  PubMed  CAS  Google Scholar 

  288. Hirokawa N, Takeda S (1998) Gene targeting studies begin to reveal the function of neurofilament proteins. J Cell Biol 143:1–4

    Article  PubMed  CAS  Google Scholar 

  289. Shen H, Barry DM, Garcia ML (2010) Distal to proximal development of peripheral nerves requires the expression of neurofilament heavy. Neuroscience 170:16–21

    Article  PubMed  CAS  Google Scholar 

  290. Gotow T, Takeda M, Tanaka T et al (1992) Macromolecular structure of reassembled neurofilaments as revealed by the quick-freeze deep-etch mica method: difference between NF-M and NF-H subunits in their ability to form cross-bridges. Eur J Cell Biol 58:331–345

    PubMed  CAS  Google Scholar 

  291. Brown HG, Hoh JH (1997) Entropic exclusion by neurofilament sidearms: a mechanism for maintaining interfilament spacing. Biochemistry 36:15035–15040

    Article  PubMed  CAS  Google Scholar 

  292. Kumar S, Hoh JH (2004) Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem Biophys Res Commun 324:489–496

    Article  PubMed  CAS  Google Scholar 

  293. Aranda-Espinoza H, Carl P, Leterrier JF et al (2002) Domain unfolding in neurofilament sidearms: effects of phosphorylation and ATP. FEBS Lett 531:397–401

    Article  PubMed  CAS  Google Scholar 

  294. Wong PC, Marszalek J, Crawford TO et al (1995) Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons. J Cell Biol 130:1413–1422

    Article  PubMed  CAS  Google Scholar 

  295. Marszalek JR, Williamson TL, Lee MK et al (1996) Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 135:711–724

    Article  PubMed  CAS  Google Scholar 

  296. Rao MV, Garcia ML, Miyazaki Y et al (2002) Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 158:681–693

    Article  PubMed  CAS  Google Scholar 

  297. Garcia ML, Lobsiger CS, Shah SB et al (2003) NF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth. J Cell Biol 163:1011–1020

    Article  PubMed  CAS  Google Scholar 

  298. Garcia ML, Rao MV, Fujimoto J et al (2009) Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth. J Neurosci 29:1277–1284

    Article  PubMed  CAS  Google Scholar 

  299. Chang R, Kwak Y, Gebremichael Y (2009) Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture. J Mol Biol 391:648–660

    Article  PubMed  CAS  Google Scholar 

  300. Zhulina EB, Leermakers FA (2007) A self-consistent field analysis of the neurofilament brush with amino-acid resolution. Biophys J 93:1421–1430

    Article  PubMed  CAS  Google Scholar 

  301. Stevenson W, Chang R, Gebremichael Y (2011) Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model. J Mol Biol 405:1101–1118

    Article  PubMed  CAS  Google Scholar 

  302. Mirsky R, Jessen KR, Brennan A et al (2002) Schwann cells as regulators of nerve development. J Physiol Paris 96:17–24

    Article  PubMed  CAS  Google Scholar 

  303. Windebank AJ, Wood P, Bunge RP et al (1985) Myelination determines the caliber of dorsal root ganglion neurons in culture. J Neurosci 5:1563–1569

    PubMed  CAS  Google Scholar 

  304. Aguayo AJ, Attiwell M, Trecarten J et al (1977) Abnormal myelination in transplanted Trembler mouse Schwann cells. Nature 265:73–75

    Article  PubMed  CAS  Google Scholar 

  305. Pollard JD, McLeod JG (1980) Nerve grafts in the Trembler mouse. An electrophysiological and histological study. J Neurol Sci 46:373–383

    Article  PubMed  CAS  Google Scholar 

  306. Kirkpatrick LL, Witt AS, Payne HR et al (2001) Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons. J Neurosci 21:2288–2297

    PubMed  CAS  Google Scholar 

  307. Sternberger NH, Quarles RH, Itoyama Y et al (1979) Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat. Proc Natl Acad Sci U S A 76:1510–1514

    Article  PubMed  CAS  Google Scholar 

  308. Trapp BD, Andrews SB, Cootauco C et al (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 109:2417–2426

    Article  PubMed  CAS  Google Scholar 

  309. Lunn MP, Crawford TO, Hughes RA et al (2002) Anti-myelin-associated glycoprotein antibodies alter neurofilament spacing. Brain 125:904–911

    Article  PubMed  Google Scholar 

  310. Zhu X, Liu Y, Yin Y et al (2009) MSC p43 required for axonal development in motor neurons. Proc Natl Acad Sci U S A 106:15944–15949

    Article  PubMed  CAS  Google Scholar 

  311. Gasser HS, Grundfest H (1939) Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Am J Physiol 127:393–414

    Google Scholar 

  312. Hursh JB (1939) Conduction velocity and diameter of nerve fibers. Am J Physiol 127:131–139

    Google Scholar 

  313. Hutchinson NA, Koles ZJ, Smith RS (1970) Conduction velocity in myelinated nerve fibres of Xenopus laevis. J Physiol 208:279–289

    PubMed  CAS  Google Scholar 

  314. Brill MH, Waxman SG, Moore JW et al (1977) Conduction velocity and spike configuration in myelinated fibres: computed dependence on internode distance. J Neurol Neurosurg Psychiatry 40:769–774

    Article  PubMed  CAS  Google Scholar 

  315. Court FA, Sherman DL, Pratt T et al (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431:191–195

    Article  PubMed  CAS  Google Scholar 

  316. Goldman L, Albus JS (1968) Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J 8:596–607

    Article  PubMed  CAS  Google Scholar 

  317. Huxley AF, Stampfli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol 108:315–339

    Google Scholar 

  318. Hodgkin AL (1964) The ionic basis of nervous conduction. Science 145:1148–1154

    Article  PubMed  CAS  Google Scholar 

  319. Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115:101–122

    PubMed  CAS  Google Scholar 

  320. Smith RS, Koles ZJ (1970) Myelinated nerve fibers: computed effect of myelin thickness on conduction velocity. Am J Physiol 219:1256–1258

    PubMed  CAS  Google Scholar 

  321. Bhat MA, Rios JC, Lu Y et al (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30:369–383

    Article  PubMed  CAS  Google Scholar 

  322. Boyle ME, Berglund EO, Murai KK et al (2001) Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30:385–397

    Article  PubMed  CAS  Google Scholar 

  323. Fried K, Hildebrand C, Erdelyi G (1982) Myelin sheath thickness and internodal length of nerve fibres in the developing feline inferior alveolar nerve. J Neurol Sci 54:47–57

    Article  PubMed  CAS  Google Scholar 

  324. Friede RL, Meier T, Diem M (1981) How is the exact length of an internode determined. J Neurol Sci 50:217–228

    Article  PubMed  CAS  Google Scholar 

  325. Murray JA, Blakemore WF (1980) The relationship between internodal length and fibre diameter in the spinal cord of the cat. J Neurol Sci 45:29–41

    Article  PubMed  CAS  Google Scholar 

  326. Sakaguchi T, Okada M, Kitamura T et al (1993) Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 153:65–68

    Article  PubMed  CAS  Google Scholar 

  327. Kriz J, Zhu Q, Julien JP et al (2000) Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res 885:32–44

    Article  PubMed  CAS  Google Scholar 

  328. Kriz J, Meier J, Julien JP et al (2000) Altered ionic conductances in axons of transgenic mouse expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Exp Neurol 163:414–421

    Article  PubMed  CAS  Google Scholar 

  329. Zochodne DW, Sun HS, Cheng C et al (2004) Accelerated diabetic neuropathy in axons without neurofilaments. Brain 127:2193–2200

    Article  PubMed  Google Scholar 

  330. Sheykholeslami K, Kaga K, Mizutani M (2001) Auditory nerve fiber differences in the normal and neurofilament deficient Japanese quail. Hear Res 159:117–124

    Article  PubMed  CAS  Google Scholar 

  331. Elder GA, Friedrich VL Jr, Lazzarini RA (2001) Schwann cells and oligodendrocytes read distinct signals in establishing myelin sheath thickness. J Neurosci Res 65:493–499

    Article  PubMed  CAS  Google Scholar 

  332. Berthold CH, Rydmark M (1983) Electron microscopic serial section analysis of nodes of Ranvier in lumbosacral spinal roots of the cat: ultrastructural organization of nodal compartments in fibres of different sizes. J Neurocytol 12:475–505

    Article  PubMed  CAS  Google Scholar 

  333. Hildebrand C, Remahl S, Persson H et al (1993) Myelinated nerve fibres in the CNS. Prog Neurobiol 40:319–384

    Article  PubMed  CAS  Google Scholar 

  334. Halter JA, Clark JW Jr (1993) The influence of nodal constriction on conduction velocity in myelinated nerve fibers. Neuroreport 4:89–92

    Article  PubMed  CAS  Google Scholar 

  335. Zimmermann H (1996) Accumulation of synaptic vesicle proteins and cytoskeletal specializations at the peripheral node of Ranvier. Microsc Res Tech 34:462–473

    Article  PubMed  CAS  Google Scholar 

  336. Zimmermann H, Vogt M (1989) Membrane proteins of synaptic vesicles and cytoskeletal specializations at the node of Ranvier in electric ray and rat. Cell Tissue Res 258:617–629

    Article  PubMed  CAS  Google Scholar 

  337. Weiss P, Hiscoe H (1948) Experiments in the mechanism of nerve growth. J Exp Zool 107:315–395

    Article  PubMed  CAS  Google Scholar 

  338. Droz B, Leblond CP (1962) Migration of proteins along the axons of the sciatic nerve. Science 137:1047–1048

    Article  PubMed  CAS  Google Scholar 

  339. Lasek RJ (1967) Bidirectional transport of radioactively labelled axoplasmic components. Nature 216:1212–1214

    Article  PubMed  CAS  Google Scholar 

  340. Lasek RJ (1968) Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exp Neurol 21:41–51

    Article  PubMed  CAS  Google Scholar 

  341. Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60:1167–1283

    PubMed  CAS  Google Scholar 

  342. Dahlstrom A, Haggendal J, Heiwall PO et al (1974) Intra-axonal transport of neurotransmitters in mammalian neurons. Symp Soc Exp Biol 28:229–247

    PubMed  CAS  Google Scholar 

  343. Hollenbeck PJ (1996) The pattern and mechanism of mitochondrial transport in axons. Front Biosci 1:d91–d102

    PubMed  CAS  Google Scholar 

  344. Lombet A, Laduron P, Mourre C et al (1985) Axonal transport of the voltage-dependent Na+ channel protein identified by its tetrodotoxin binding site in rat sciatic nerves. Brain Res 345:153–158

    Article  PubMed  CAS  Google Scholar 

  345. Black MM, Lasek RJ (1980) Slow components of axonal transport: two cytoskeletal networks. J Cell Biol 86:616–623

    Article  PubMed  CAS  Google Scholar 

  346. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  347. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  348. Roy S, Coffee P, Smith G et al (2000) Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J Neurosci 20:6849–6861

    PubMed  CAS  Google Scholar 

  349. Wang L, Ho CL, Sun D et al (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2:137–141

    Article  PubMed  CAS  Google Scholar 

  350. Trivedi N, Jung P, Brown A (2007) Neurofilaments switch between distinct mobile and stationary states during their transport along axons. J Neurosci 27:507–516

    Article  PubMed  CAS  Google Scholar 

  351. Prahlad V, Helfand BT, Langford GM et al (2000) Fast transport of neurofilament protein along microtubules in squid axoplasm. J Cell Sci 113(Pt 22):3939–3946

    PubMed  CAS  Google Scholar 

  352. Jung C, Lee S, Ortiz D et al (2005) The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit. Brain Res Mol Brain Res 141:151–155

    Article  PubMed  CAS  Google Scholar 

  353. LaMonte BH, Wallace KE, Holloway BA et al (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727

    Article  PubMed  CAS  Google Scholar 

  354. Xia CH, Roberts EA, Her LS et al (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 161:55–66

    Article  PubMed  CAS  Google Scholar 

  355. Wang L, Brown A (2010) A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport. Mol Neurodegener 5:52

    Article  PubMed  CAS  Google Scholar 

  356. Baas PW, Brown A (1997) Slow axonal transport: the polymer transport model. Trends Cell Biol 7:380–384

    Article  PubMed  CAS  Google Scholar 

  357. Hirokawa N, Funakoshi ST, Takeda S (1997) Slow axonal transport: the subunit transport model. Trends Cell Biol 7:384–388

    Article  PubMed  CAS  Google Scholar 

  358. Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212s–221s

    Article  PubMed  CAS  Google Scholar 

  359. Okabe S, Miyasaka H, Hirokawa N (1993) Dynamics of the neuronal intermediate filaments. J Cell Biol 121:375–386

    Article  PubMed  CAS  Google Scholar 

  360. Terada S, Nakata T, Peterson AC et al (1996) Visualization of slow axonal transport in vivo. Science 273:784–788

    Article  PubMed  CAS  Google Scholar 

  361. Popov S, Poo MM (1992) Diffusional transport of macromolecules in developing nerve processes. J Neurosci 12:77–85

    PubMed  CAS  Google Scholar 

  362. Yan Y, Brown A (2005) Neurofilament polymer transport in axons. J Neurosci 25:7014–7021

    Article  PubMed  CAS  Google Scholar 

  363. Yuan A, Rao MV, Kumar A et al (2003) Neurofilament transport in vivo minimally requires hetero-oligomer formation. J Neurosci 23:9452–9458

    PubMed  CAS  Google Scholar 

  364. Yabe JT, Chan WK, Chylinski TM et al (2001) The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation. Cell Motil Cytoskeleton 48:61–83

    Article  PubMed  CAS  Google Scholar 

  365. Lee S, Sunil N, Tejada JM et al (2011) Differential roles of kinesin and dynein in translocation of neurofilaments into axonal neurites. J Cell Sci 124:1022–1031

    Article  PubMed  CAS  Google Scholar 

  366. Hoffman PN, Lasek RJ, Griffin JW et al (1983) Slowing of the axonal transport of neurofilament proteins during development. J Neurosci 3:1694–1700

    PubMed  CAS  Google Scholar 

  367. Willard M, Simon C (1983) Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell 35:551–559

    Article  PubMed  CAS  Google Scholar 

  368. Rao MV, Campbell J, Yuan A et al (2003) The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 163:1021–1031

    Article  PubMed  CAS  Google Scholar 

  369. Yuan A, Nixon RA, Rao MV (2006) Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo. Neurosci Lett 393:264–268

    Article  PubMed  CAS  Google Scholar 

  370. Brown A, Wang L, Jung P (2005) Stochastic simulation of neurofilament transport in axons: the “stop-and-go” hypothesis. Mol Biol Cell 16:4243–4255

    Article  PubMed  CAS  Google Scholar 

  371. Yabe JT, Chylinski T, Wang FS et al (2001) Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 21:2195–2205

    PubMed  CAS  Google Scholar 

  372. Kushkuley J, Chan WK, Lee S et al (2009) Neurofilament cross-bridging competes with kinesin-dependent association of neurofilaments with microtubules. J Cell Sci 122:3579–3586

    Article  PubMed  CAS  Google Scholar 

  373. Lee S, Sunil N, Shea TB (2011) C-terminal neurofilament phosphorylation fosters neurofilament-neurofilament associations that compete with axonal transport. Cytoskeleton (Hoboken) 68:8–17

    CAS  Google Scholar 

  374. Goodall EF, Morrison KE (2006) Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment. Expert Rev Mol Med 8:1–22

    Article  PubMed  Google Scholar 

  375. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  376. Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  377. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  378. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  PubMed  CAS  Google Scholar 

  379. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  PubMed  CAS  Google Scholar 

  380. Al-Chalabi A, Andersen PM, Nilsson P et al (1999) Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 8:157–164

    Article  PubMed  CAS  Google Scholar 

  381. Figlewicz DA, Krizus A, Martinoli MG et al (1994) Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet 3:1757–1761

    Article  PubMed  CAS  Google Scholar 

  382. Tomkins J, Usher P, Slade JY et al (1998) Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9:3967–3970

    Article  PubMed  CAS  Google Scholar 

  383. Rooke K, Figlewicz DA, Han FY et al (1996) Analysis of the KSP repeat of the neurofilament heavy subunit in familiar amyotrophic lateral sclerosis. Neurology 46:789–790

    Article  PubMed  CAS  Google Scholar 

  384. Vechio JD, Bruijn LI, Xu Z et al (1996) Sequence variants in human neurofilament proteins: absence of linkage to familial amyotrophic lateral sclerosis. Ann Neurol 40:603–610

    Article  PubMed  CAS  Google Scholar 

  385. Gros-Louis F, Lariviere R, Gowing G et al (2004) A frameshift deletion in peripherin gene associated with amyotrophic lateral sclerosis. J Biol Chem 279:45951–45956

    Article  PubMed  CAS  Google Scholar 

  386. Leung CL, He CZ, Kaufmann P et al (2004) A pathogenic peripherin gene mutation in a patient with amyotrophic lateral sclerosis. Brain Pathol 14:290–296

    Article  PubMed  CAS  Google Scholar 

  387. Corrado L, Carlomagno Y, Falasco L et al (2011) A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient. Neurobiol Aging 32(552):e1–e6

    PubMed  Google Scholar 

  388. Brettschneider J, Petzold A, Sussmuth SD et al (2006) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66:852–856

    Article  PubMed  CAS  Google Scholar 

  389. Niebroj-Dobosz I, Dziewulska D, Janik P (2006) Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia Neuropathol 44:191–196

    PubMed  CAS  Google Scholar 

  390. Zetterberg H, Jacobsson J, Rosengren L et al (2007) Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur J Neurol 14:1329–1333

    Article  PubMed  CAS  Google Scholar 

  391. Manetto V, Sternberger NH, Perry G et al (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47:642–653

    Article  PubMed  CAS  Google Scholar 

  392. Gama Sosa MA, Friedrich VL Jr, DeGasperi R et al (2003) Human midsized neurofilament subunit induces motor neuron disease in transgenic mice. Exp Neurol 184:408–419

    Article  PubMed  CAS  Google Scholar 

  393. Xu Z, Cork LC, Griffin JW et al (1993) Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73:23–33

    Article  PubMed  CAS  Google Scholar 

  394. Beaulieu JM, Jacomy H, Julien JP (2000) Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J Neurosci 20:5321–5328

    PubMed  CAS  Google Scholar 

  395. Beaulieu JM, Nguyen MD, Julien JP (1999) Late onset of motor neurons in mice overexpressing wild-type peripherin. J Cell Biol 147:531–544

    Article  PubMed  CAS  Google Scholar 

  396. Millecamps S, Robertson J, Lariviere R et al (2006) Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J Neurochem 98:926–938

    Article  PubMed  CAS  Google Scholar 

  397. Bergeron C, Beric-Maskarel K, Muntasser S et al (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol 53:221–230

    Article  PubMed  CAS  Google Scholar 

  398. Beaulieu JM, Julien JP (2003) Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins. J Neurochem 85:248–256

    Article  PubMed  CAS  Google Scholar 

  399. Robertson J, Beaulieu JM, Doroudchi MM et al (2001) Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-alpha. J Cell Biol 155:217–226

    Article  PubMed  CAS  Google Scholar 

  400. Lariviere RC, Beaulieu JM, Nguyen MD et al (2003) Peripherin is not a contributing factor to motor neuron disease in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase. Neurobiol Dis 13:158–166

    Article  PubMed  CAS  Google Scholar 

  401. Strong MJ, Leystra-Lantz C, Ge WW (2004) Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis. Biochem Biophys Res Commun 316:317–322

    Article  PubMed  CAS  Google Scholar 

  402. Wong NK, He BP, Strong MJ (2000) Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol 59:972–982

    PubMed  CAS  Google Scholar 

  403. Ge WW, Volkening K, Leystra-Lantz C et al (2007) 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3′ UTR. Mol Cell Neurosci 34:80–87

    Article  PubMed  CAS  Google Scholar 

  404. Strong MJ, Volkening K, Hammond R et al (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35:320–327

    Article  PubMed  CAS  Google Scholar 

  405. Ge WW, Wen W, Strong W et al (2005) Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem 280:118–124

    PubMed  CAS  Google Scholar 

  406. Volkening K, Leystra-Lantz C, Strong MJ (2010) Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans. Amyotroph Lateral Scler 11:97–103

    Article  PubMed  CAS  Google Scholar 

  407. Shan X, Chiang PM, Price DL et al (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 107:16325–16330

    Article  PubMed  CAS  Google Scholar 

  408. Swarup V, Julien JP (2011) ALS pathogenesis: recent insights from genetics and mouse models. Prog Neuropsychopharmacol Biol Psychiatry 35:363–369

    Article  PubMed  CAS  Google Scholar 

  409. McLean J, Xiao S, Miyazaki K et al (2008) A novel peripherin isoform generated by alternative translation is required for normal filament network formation. J Neurochem 104:1663–1673

    Article  PubMed  CAS  Google Scholar 

  410. Robertson J, Doroudchi MM, Nguyen MD et al (2003) A neurotoxic peripherin splice variant in a mouse model of ALS. J Cell Biol 160:939–949

    Article  PubMed  CAS  Google Scholar 

  411. Xiao S, Tjostheim S, Sanelli T et al (2008) An aggregate-inducing peripherin isoform generated through intron retention is upregulated in amyotrophic lateral sclerosis and associated with disease pathology. J Neurosci 28:1833–1840

    Article  PubMed  CAS  Google Scholar 

  412. McLean JR, Robertson J (2011) Isoform-specific expression and ratio changes accompany oxidant-induced peripherin aggregation in a neuroblastoma cell line. Brain Res 1422:57–65

    Article  PubMed  CAS  Google Scholar 

  413. Collard JF, Cote F, Julien JP (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375:61–64

    Article  PubMed  CAS  Google Scholar 

  414. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56

    Article  PubMed  CAS  Google Scholar 

  415. Zhang B, Tu P, Abtahian F et al (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315

    Article  PubMed  CAS  Google Scholar 

  416. Bilsland LG, Sahai E, Kelly G et al (2010) Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci U S A 107:20523–20528

    Article  PubMed  CAS  Google Scholar 

  417. Ackerley S, Grierson AJ, Brownlees J et al (2000) Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 150:165–176

    Article  PubMed  CAS  Google Scholar 

  418. Manser C, Stevenson A, Banner S et al (2008) Deregulation of PKN1 activity disrupts neurofilament organisation and axonal transport. FEBS Lett 582:2303–2308

    Article  PubMed  CAS  Google Scholar 

  419. King AE, Dickson TC, Blizzard CA et al (2007) Excitotoxicity mediated by non-NMDA receptors causes distal axonopathy in long-term cultured spinal motor neurons. Eur J Neurosci 26:2151–2159

    Article  PubMed  CAS  Google Scholar 

  420. Kesavapany S, Patel V, Zheng YL et al (2007) Inhibition of Pin1 reduces glutamate-induced perikaryal accumulation of phosphorylated neurofilament-H in neurons. Mol Biol Cell 18:3645–3655

    Article  PubMed  CAS  Google Scholar 

  421. Stevenson A, Yates DM, Manser C et al (2009) Riluzole protects against glutamate-induced slowing of neurofilament axonal transport. Neurosci Lett 454:161–164

    Article  PubMed  CAS  Google Scholar 

  422. Hafezparast M, Klocke R, Ruhrberg C et al (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  PubMed  CAS  Google Scholar 

  423. Motil J, Dubey M, Chan WK et al (2007) Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites. Brain Res 1164:125–131

    Article  PubMed  CAS  Google Scholar 

  424. Teuling E, van Dis V, Wulf PS et al (2008) A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Hum Mol Genet 17:2849–2862

    Article  PubMed  CAS  Google Scholar 

  425. Cheroni C, Marino M, Tortarolo M et al (2009) Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis. Hum Mol Genet 18:82–96

    Article  PubMed  CAS  Google Scholar 

  426. Strong MJ, Sopper MM, Crow JP et al (1998) Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem Biophys Res Commun 248:157–164

    Article  PubMed  CAS  Google Scholar 

  427. King AE, Dickson TC, Blizzard CA et al (2011) Neuron-glia interactions underlie ALS-like axonal cytoskeletal pathology. Neurobiol Aging 32:459–469

    Article  PubMed  CAS  Google Scholar 

  428. Williamson TL, Bruijn LI, Zhu Q et al (1998) Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci U S A 95:9631–9636

    Article  PubMed  CAS  Google Scholar 

  429. Kong J, Xu Z (2000) Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci Lett 281:72–74

    Article  PubMed  CAS  Google Scholar 

  430. Couillard-Despres S, Zhu Q, Wong PC et al (1998) Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc Natl Acad Sci U S A 95:9626–9630

    Article  PubMed  CAS  Google Scholar 

  431. Roy J, Minotti S, Dong L et al (1998) Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. J Neurosci 18:9673–9684

    PubMed  CAS  Google Scholar 

  432. Tu PH, Raju P, Robinson KA et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93:3155–3160

    Article  PubMed  CAS  Google Scholar 

  433. Lobsiger CS, Garcia ML, Ward CM et al (2005) Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A 102:10351–10356

    Article  PubMed  CAS  Google Scholar 

  434. Ehlers MD, Fung ET, O’Brien RJ et al (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 18:720–730

    PubMed  CAS  Google Scholar 

  435. Sanelli T, Ge W, Leystra-Lantz C et al (2007) Calcium mediated excitotoxicity in neurofilament aggregate-bearing neurons in vitro is NMDA receptor dependant. J Neurol Sci 256:39–51

    Article  PubMed  CAS  Google Scholar 

  436. Teunissen CE, Dijkstra C, Polman C (2005) Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol 4:32–41

    Article  PubMed  Google Scholar 

  437. Sussmuth SD, Reiber H, Tumani H (2001) Tau protein in cerebrospinal fluid (CSF): a blood-CSF barrier related evaluation in patients with various neurological diseases. Neurosci Lett 300:95–98

    Article  PubMed  CAS  Google Scholar 

  438. Sussmuth SD, Tumani H, Ecker D et al (2003) Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci Lett 353:57–60

    Article  PubMed  CAS  Google Scholar 

  439. Reijn TS, Abdo WF, Schelhaas HJ et al (2009) CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol 256:615–619

    Article  PubMed  CAS  Google Scholar 

  440. Ganesalingam J, An J, Shaw CE et al (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117:528–537

    Article  PubMed  CAS  Google Scholar 

  441. Vogel P, Gabriel M, Goebel HH et al (1985) Hereditary motor sensory neuropathy type II with neurofilament accumulation: new finding or new disorder? Ann Neurol 17:455–461

    Article  PubMed  CAS  Google Scholar 

  442. Brownlees J, Ackerley S, Grierson AJ et al (2002) Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet 11:2837–2844

    Article  PubMed  CAS  Google Scholar 

  443. Perez-Olle R, Lopez-Toledano MA, Goryunov D et al (2005) Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem 93:861–874

    Article  PubMed  CAS  Google Scholar 

  444. Lee IB, Kim SK, Chung SH et al (2008) The effect of rod domain A148V mutation of neurofilament light chain on filament formation. BMB Rep 41:868–874

    Article  PubMed  CAS  Google Scholar 

  445. Shin JS, Chung KW, Cho SY et al (2008) NEFL Pro22Arg mutation in Charcot-Marie-Tooth disease type 1. J Hum Genet 53:936–940

    Article  PubMed  Google Scholar 

  446. Georgiou DM, Zidar J, Korosec M et al (2002) A novel NF-L mutation Pro22Ser is associated with CMT2 in a large Slovenian family. Neurogenetics 4:93–96

    Article  PubMed  CAS  Google Scholar 

  447. Fabrizi GM, Cavallaro T, Angiari C et al (2004) Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type 2E. Neurology 62:1429–1431

    Article  PubMed  CAS  Google Scholar 

  448. Bhagavati S, Maccabee PJ, Xu W (2009) The neurofilament light chain gene (NEFL) mutation Pro22Ser can be associated with mixed axonal and demyelinating neuropathy. J Clin Neurosci 16:830–831

    Article  PubMed  CAS  Google Scholar 

  449. Yoshihara T, Yamamoto M, Hattori N et al (2002) Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst 7:221–224

    Article  PubMed  CAS  Google Scholar 

  450. Jordanova A, De Jonghe P, Boerkoel CF et al (2003) Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain 126:590–597

    Article  PubMed  CAS  Google Scholar 

  451. Choi BO, Lee MS, Shin SH et al (2004) Mutational analysis of PMP22, MPZ, GJB1, EGR2 and NEFL in Korean Charcot-Marie-Tooth neuropathy patients. Hum Mutat 24:185–186

    Article  PubMed  CAS  Google Scholar 

  452. Zuchner S, Vorgerd M, Sindern E et al (2004) The novel neurofilament light (NEFL) mutation Glu397Lys is associated with a clinically and morphologically heterogeneous type of Charcot-Marie-Tooth neuropathy. Neuromuscul Disord 14:147–157

    Article  PubMed  Google Scholar 

  453. Fabrizi GM, Cavallaro T, Angiari C et al (2007) Charcot-Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain 130:394–403

    Article  PubMed  Google Scholar 

  454. Leung CL, Nagan N, Graham TH et al (2006) A novel duplication/insertion mutation of NEFL in a patient with Charcot-Marie-Tooth disease. Am J Med Genet A 140:1021–1025

    PubMed  Google Scholar 

  455. Abe A, Numakura C, Saito K et al (2009) Neurofilament light chain polypeptide gene mutations in Charcot-Marie-Tooth disease: nonsense mutation probably causes a recessive phenotype. J Hum Genet 54:94–97

    Article  PubMed  CAS  Google Scholar 

  456. Dequen F, Filali M, Lariviere RC et al (2010) Reversal of neuropathy phenotypes in conditional mouse model of Charcot-Marie-Tooth disease type 2E. Hum Mol Genet 19:2616–2629

    Article  PubMed  CAS  Google Scholar 

  457. Shen H, Barry DM, Dale JM et al (2011) Muscle pathology without severe nerve pathology in a new mouse model of Charcot-Marie-Tooth disease type 2E. Hum Mol Genet 20:2535–2548

    Article  PubMed  CAS  Google Scholar 

  458. Ackerley S, James PA, Kalli A et al (2006) A mutation in the small heat-shock protein HSPB1 leading to distal hereditary motor neuronopathy disrupts neurofilament assembly and the axonal transport of specific cellular cargoes. Hum Mol Genet 15:347–354

    Article  PubMed  CAS  Google Scholar 

  459. Evgrafov OV, Mersiyanova I, Irobi J et al (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36:602–606

    Article  PubMed  CAS  Google Scholar 

  460. Goryunov D, Nightingale A, Bornfleth L et al (2008) Multiple disease-linked myotubularin mutations cause NFL assembly defects in cultured cells and disrupt myotubularin dimerization. J Neurochem 104:1536–1552

    Article  PubMed  CAS  Google Scholar 

  461. Irobi J, Van Impe K, Seeman P et al (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36:597–601

    Article  PubMed  CAS  Google Scholar 

  462. Zhai J, Lin H, Julien JP et al (2007) Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1. Hum Mol Genet 16:3103–3116

    Article  PubMed  CAS  Google Scholar 

  463. Zhang R, Yang X, Zi X et al (2011) Cellular expression of (R127W) HSPB1 and its co-localization with neurofilament light chain. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 28:496–500

    PubMed  CAS  Google Scholar 

  464. Tradewell ML, Durham HD, Mushynski WE et al (2009) Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of charcot-marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol 68:642–652

    Article  PubMed  CAS  Google Scholar 

  465. Hull E, Spoja C, Cordova M et al (2008) Neurofilament protein aggregation in a cell line model system. Biochem Biophys Res Commun 366:73–79

    Article  PubMed  CAS  Google Scholar 

  466. Bomont P, Cavalier L, Blondeau F et al (2000) The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26:370–374

    Article  PubMed  CAS  Google Scholar 

  467. Pfeiffer J, Schlote W, Bishoff A et al (1977) Generalized giant axonal neuropathy. A filament-forming disease of neuronal, endothelial, glial and Schwann cells in a partient without kinky hair. Acta neuropathologica (Berl) 40:213–218

    Article  Google Scholar 

  468. Asbury AK, Gale MK, Cox SC et al (1972) Giant axonal neuropathy–a unique case with segmental neurofilamentous masses. Acta Neuropathol 20:237–247

    Article  PubMed  CAS  Google Scholar 

  469. Fois A, Balestri P, Farnetani MA et al (1985) Giant axonal neuropathy. Endocrinological and histological studies. Eur J Pediatr 144:274–280

    Article  PubMed  CAS  Google Scholar 

  470. Mohri I, Taniike M, Yoshikawa H et al (1998) A case of giant axonal neuropathy showing focal aggregation and hypophosphorylation of intermediate filaments. Brain Dev 20:594–597

    Article  PubMed  CAS  Google Scholar 

  471. Treiber-Held S, Budjarjo-Welim H, Reimann D et al (1994) Giant axonal neuropathy: a generalized disorder of intermediate filaments with longitudinal grooves in the hair. Neuropediatrics 25:89–93

    Article  PubMed  CAS  Google Scholar 

  472. Donaghy M, King RH, Thomas PK et al (1988) Abnormalities of the axonal cytoskeleton in giant axonal neuropathy. J Neurocytol 17:197–208

    Article  PubMed  CAS  Google Scholar 

  473. Monaco S, Autilio-Gambetti L, Zabel D et al (1985) Giant axonal neuropathy: acceleration of neurofilament transport in optic axons. Proc Natl Acad Sci U S A 82:920–924

    Article  PubMed  CAS  Google Scholar 

  474. Ding J, Liu JJ, Kowal AS et al (2002) Microtubule-associated protein 1B: a neuronal binding partner for gigaxonin. J Cell Biol 158:427–433

    Article  PubMed  CAS  Google Scholar 

  475. Wang W, Ding J, Allen E et al (2005) Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin-proteasome pathway. Curr Biol 15:2050–2055

    Article  PubMed  CAS  Google Scholar 

  476. Ding J, Allen E, Wang W et al (2006) Gene targeting of GAN in mouse causes a toxic accumulation of microtubule-associated protein 8 and impaired retrograde axonal transport. Hum Mol Genet 15:1451–1463

    Article  PubMed  CAS  Google Scholar 

  477. Allen E, Ding J, Wang W et al (2005) Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438:224–228

    Article  PubMed  CAS  Google Scholar 

  478. Cleveland DW, Yamanaka K, Bomont P (2009) Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway. Hum Mol Genet 18:1384–1394

    Article  PubMed  CAS  Google Scholar 

  479. Yang Y, Allen E, Ding J et al (2007) Giant axonal neuropathy. Cell Mol Life Sci 64:601–609

    Article  PubMed  CAS  Google Scholar 

  480. Ganay T, Boizot A, Burrer R et al (2011) Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice. Mol Neurodegener 6:25

    Article  PubMed  Google Scholar 

  481. Dequen F, Bomont P, Gowing G et al (2008) Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 107:253–264

    Article  PubMed  CAS  Google Scholar 

  482. Cairns NJ, Zhukareva V, Uryu K et al (2004) Alpha-internexin is present in the pathological inclusions of neuronal intermediate filament inclusion disease. Am J Pathol 164:2153–2161

    Article  PubMed  CAS  Google Scholar 

  483. Uchikado H, Shaw G, Wang DS et al (2005) Screening for neurofilament inclusion disease using alpha-internexin immunohistochemistry. Neurology 64:1658–1659

    Article  PubMed  Google Scholar 

  484. Momeni P, Cairns NJ, Perry RH et al (2006) Mutation analysis of patients with neuronal intermediate filament inclusion disease (NIFID). Neurobiol Aging 27:778, e1-778.e6

    Article  PubMed  CAS  Google Scholar 

  485. Dequen F, Cairns NJ, Bigio EH et al (2011) Gigaxonin mutation analysis in patients with NIFID. Neurobiol Aging 32:1528–1529

    Article  PubMed  CAS  Google Scholar 

  486. Neumann M, Roeber S, Kretzschmar HA et al (2009) Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118:605–616

    Article  PubMed  CAS  Google Scholar 

  487. Medori R, Autilio-Gambetti L, Monaco S et al (1985) Experimental diabetic neuropathy: impairment of slow transport with changes in axon cross-sectional area. Proc Natl Acad Sci U S A 82:7716–7720

    Article  PubMed  CAS  Google Scholar 

  488. Medori R, Jenich H, Autilio-Gambetti L et al (1988) Experimental diabetic neuropathy: similar changes of slow axonal transport and axonal size in different animal models. J Neurosci 8:1814–1821

    PubMed  CAS  Google Scholar 

  489. Yagihashi S, Kamijo M, Watanabe K (1990) Reduced myelinated fiber size correlates with loss of axonal neurofilaments in peripheral nerve of chronically streptozotocin diabetic rats. Am J Pathol 136:1365–1373

    PubMed  CAS  Google Scholar 

  490. Schmidt RE, Beaudet LN, Plurad SB et al (1997) Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Res 769:375–383

    Article  PubMed  CAS  Google Scholar 

  491. Fernyhough P, Gallagher A, Averill SA et al (1999) Aberrant neurofilament phosphorylation in sensory neurons of rats with diabetic neuropathy. Diabetes 48:881–889

    Article  PubMed  CAS  Google Scholar 

  492. Scott JN, Clark AW, Zochodne DW (1999) Neurofilament and tubulin gene expression in progressive experimental diabetes: failure of synthesis and export by sensory neurons. Brain 122(Pt 11):2109–2118

    Article  PubMed  Google Scholar 

  493. Galloway PG, Mulvihill P, Perry G (1992) Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol 140:809–822

    PubMed  CAS  Google Scholar 

  494. Trimmer PA, Borland MK, Keeney PM et al (2004) Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 88:800–812

    Article  PubMed  CAS  Google Scholar 

  495. Forno LS, Sternberger LA, Sternberger NH et al (1986) Reaction of Lewy bodies with antibodies to phosphorylated and non-phosphorylated neurofilaments. Neurosci Lett 64:253–258

    Article  PubMed  CAS  Google Scholar 

  496. Pappolla MA (1986) Lewy bodies of Parkinson’s disease. Immune electron microscopic demonstration of neurofilament antigens in constituent filaments. Arch Pathol Lab Med 110:1160–1163

    PubMed  CAS  Google Scholar 

  497. Lavedan C, Buchholtz S, Nussbaum RL et al (2002) A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett 322:57–61

    Article  PubMed  CAS  Google Scholar 

  498. Perez-Olle R, Lopez-Toledano MA, Liem RK (2004) The G336S variant in the human neurofilament-M gene does not affect its assembly or distribution: importance of the functional analysis of neurofilament variants. J Neuropathol Exp Neurol 63:759–774

    PubMed  CAS  Google Scholar 

  499. Han F, Bulman DE, Panisset M et al (2005) Neurofilament M gene in a French-Canadian population with Parkinson’s disease. Can J Neurol Sci 32:68–70

    PubMed  CAS  Google Scholar 

  500. Kruger R, Fischer C, Schulte T et al (2003) Mutation analysis of the neurofilament M gene in Parkinson’s disease. Neurosci Lett 351:125–129

    Article  PubMed  CAS  Google Scholar 

  501. Griffin JW, Hoffman PN, Clark AW et al (1978) Slow axonal transport of neurofilament proteins: impairment of beta, beta′-iminodipropionitrile administration. Science 202:633–635

    Article  PubMed  CAS  Google Scholar 

  502. Soler-Martin C, Vilardosa U, Saldana-Ruiz S et al (2012) Loss of neurofilaments in the neuromuscular junction in a rat model of proximal axonopathy. Neuropathol Appl Neurobiol 38(1):61–71

    Article  PubMed  CAS  Google Scholar 

  503. Clark AW, Griffin JW, Price DL (1980) The axonal pathology in chronic IDPN intoxication. J Neuropathol Exp Neurol 39:42–55

    Article  PubMed  CAS  Google Scholar 

  504. Eyer J, McLean WG, Leterrier JF (1989) Effect of a single dose of beta, beta′-iminodipropionitrile in vivo on the properties of neurofilaments in vitro: comparison with the effect of iminodipropionitrile added directly to neurofilaments in vitro. J Neurochem 52:1759–1765

    Article  PubMed  CAS  Google Scholar 

  505. Griffin JW, Parhad I, Gold B et al (1985) Axonal transport of neurofilament proteins in IDPN neurotoxicity. Neurotoxicology 6:43–53

    PubMed  CAS  Google Scholar 

  506. Couri D, Milks M (1982) Toxicity and metabolism of the neurotoxic hexacarbons n-hexane, 2-hexanone, and 2,5-hexanedione. Annu Rev Pharmacol Toxicol 22:145–166

    Article  PubMed  CAS  Google Scholar 

  507. Lehning EJ, Dyer KS, Jortner BS et al (1995) Axonal atrophy is a specific component of 2,5-hexanedione peripheral neuropathy. Toxicol Appl Pharmacol 135:58–66

    Article  PubMed  CAS  Google Scholar 

  508. Wang QS, Hou LY, Zhang CL et al (2008) Changes of cytoskeletal proteins in nerve tissues and serum of rats treated with 2,5-hexanedione. Toxicology 244:166–178

    Article  PubMed  CAS  Google Scholar 

  509. Karlsson JE, Rosengren LE, Haglid KG (1991) Quantitative and qualitative alterations of neuronal and glial intermediate filaments in rat nervous system after exposure to 2,5-hexanedione. J Neurochem 57:1437–1444

    Article  PubMed  CAS  Google Scholar 

  510. Tuckwell DS, Laszlo L, Mayer RJ (1992) 2,5-Hexanedione-induced intermediate filament aggregates contain ubiquitin-protein conjugate immunoreactivity and resemble Rosenthal fibres. Neuropathol Appl Neurobiol 18:593–609

    Article  PubMed  CAS  Google Scholar 

  511. Anthony DC, Giangaspero F, Graham DG (1983) The spatio-temporal pattern of the axonopathy associated with the neurotoxicity of 3,4-dimethyl-2,5-hexanedione in the rat. J Neuropathol Exp Neurol 42:548–560

    Article  PubMed  CAS  Google Scholar 

  512. Sickles DW (1991) Toxic neurofilamentous axonopathies and fast anterograde axonal transport. III. Recovery from single injections and multiple dosing effects of acrylamide and 2,5-hexanedione. Toxicol Appl Pharmacol 108:390–396

    Article  PubMed  CAS  Google Scholar 

  513. Sickles DW (1992) Toxic neurofilamentous axonopathies and fast anterograde axonal transport. IV. In vitro analysis of transport following acrylamide and 2,5-hexanedione. Toxicol Lett 61:199–204

    Article  PubMed  CAS  Google Scholar 

  514. Stone JD, Peterson AP, Eyer J et al (1999) Axonal neurofilaments are nonessential elements of toxicant-induced reductions in fast axonal transport: video-enhanced differential interference microscopy in peripheral nervous system axons. Toxicol Appl Pharmacol 161:50–58

    Article  PubMed  CAS  Google Scholar 

  515. Stone JD, Peterson AP, Eyer J et al (2001) Neurofilaments are nonessential to the pathogenesis of toxicant-induced axonal degeneration. J Neurosci 21:2278–2287

    PubMed  CAS  Google Scholar 

  516. Stone JD, Peterson AP, Eyer J et al (2000) Neurofilaments are non-essential elements of toxicant-induced reductions in fast axonal transport: pulse labeling in CNS neurons. Neurotoxicology 21:447–457

    PubMed  CAS  Google Scholar 

  517. Bizzi A, Gambetti P (1986) Phosphorylation of neurofilaments is altered in aluminium intoxication. Acta Neuropathol 71:154–158

    Article  PubMed  CAS  Google Scholar 

  518. Shea TB, Balikian P, Beermann ML (1992) Aluminum inhibits neurofilament protein degradation by multiple cytoskeleton-associated proteases. FEBS Lett 307:195–198

    Article  PubMed  CAS  Google Scholar 

  519. Shea TB, Beermann ML (1994) Multiple interactions of aluminum with neurofilament subunits: regulation by phosphate-dependent interactions between C-terminal extensions of the high and middle molecular weight subunits. J Neurosci Res 38:160–166

    Article  PubMed  CAS  Google Scholar 

  520. Shea TB, Wheeler E, Jung C (1997) Aluminum inhibits neurofilament assembly, cytoskeletal incorporation, and axonal transport. Dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover. Mol Chem Neuropathol 32:17–39

    Article  PubMed  CAS  Google Scholar 

  521. Endo H, Kittur S, Sabri MI (1994) Acrylamide alters neurofilament protein gene expression in rat brain. Neurochem Res 19:815–820

    Article  PubMed  CAS  Google Scholar 

  522. Gold BG, Price DL, Griffin JW et al (1988) Neurofilament antigens in acrylamide neuropathy. J Neuropathol Exp Neurol 47:145–157

    Article  PubMed  CAS  Google Scholar 

  523. Howland RD, Alli P (1986) Altered phosphorylation of rat neuronal cytoskeletal proteins in acrylamide induced neuropathy. Brain Res 363:333–339

    Article  PubMed  CAS  Google Scholar 

  524. Tanii H, Hayashi M, Hashimoto K (1988) Neurofilament degradation in the nervous system of rats intoxicated with acrylamide, related compounds or 2,5-hexanedione. Arch Toxicol 62:70–75

    Article  PubMed  CAS  Google Scholar 

  525. Sickles DW, Pearson JK, Beall A et al (1994) Toxic axonal degeneration occurs independent of neurofilament accumulation. J Neurosci Res 39:347–354

    Article  PubMed  CAS  Google Scholar 

  526. Takahashi A, Mizutani M, Agr B et al (1994) Acrylamide-induced neurotoxicity in the central nervous system of Japanese quails. Comparative studies of normal and neurofilament-deficient quails. J Neuropathol Exp Neurol 53:276–283

    Article  PubMed  CAS  Google Scholar 

  527. Vahidnia A, Romijn F, Tiller M et al (2006) Arsenic-induced toxicity: effect on protein composition in sciatic nerve. Hum Exp Toxicol 25:667–674

    Article  PubMed  CAS  Google Scholar 

  528. DeFuria J, Shea TB (2007) Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: roles of JNK and GSK-3beta. Brain Res 1181:74–82

    Article  PubMed  CAS  Google Scholar 

  529. RamaRao G, Acharya JN, Bhattacharya BK (2011) Changes of protein oxidation, calpain and cytoskeletal proteins (alpha tubulin and pNF-H) levels in rat brain after nerve agent poisoning. Toxicol Lett 203:227–236

    Article  PubMed  CAS  Google Scholar 

  530. RamaRao G, Waghmare C, Kumar Gupta A et al (2011) Soman-induced alterations of protein kinase C isozymes expression in five discrete areas of the rat brain. Drug Chem Toxicol 34:221–232

    Article  PubMed  CAS  Google Scholar 

  531. Ramarao G, Waghmare C, Srivastava N et al (2011) Regional alterations of JNK3 and CaMKIIalpha subunit expression in the rat brain after soman poisoning. Hum Exp Toxicol 30:448–459

    Article  PubMed  CAS  Google Scholar 

  532. Lurie DI, Brooks DM, Gray LC (2006) The effect of lead on the avian auditory brainstem. Neurotoxicology 27:108–117

    Article  PubMed  CAS  Google Scholar 

  533. Jones LG, Prins J, Park S et al (2008) Lead exposure during development results in increased neurofilament phosphorylation, neuritic beading, and temporal processing deficits within the murine auditory brainstem. J Comp Neurol 506:1003–1017

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Eyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Perrot, R., Eyer, J. (2013). Neurofilaments: Properties, Functions, and Regulation. In: Dermietzel, R. (eds) The Cytoskeleton. Neuromethods, vol 79. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-266-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-266-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-265-0

  • Online ISBN: 978-1-62703-266-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics