Skip to main content

Knockout and Knock-in Mouse Models to Study Purinergic Signaling

  • Protocol
  • First Online:
Purinergic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2041))

Abstract

Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of the human purinoceptors have been found in mouse, making this laboratory animal a useful model to study their function. Indeed, analyses of purinoceptors via knock-in or knockout approaches to produce gain or loss of function phenotypes have revealed several important therapeutic targets. None of the homozygous purinoceptor knockouts proved to be developmentally lethal, which suggest that either these receptors are not involved in key developmental processes or that the large number of receptors in each family allowed for functional compensation. Different models for the same purinoceptor often show compatible phenotypes but there have been examples of significant discrepancies. These revealed unexpected differences in the structure of human and mouse genes and emphasized the importance of the genetic background of different mouse strains. In this chapter, we provide an overview of the current knowledge and new trends in the modifications of purinoceptor genes in vivo. We discuss the resulting phenotypes, their applications and relative merits and limitations of mouse models available to study purinoceptor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  3. Webb TE, Simon J, Krishek BJ et al (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324:219–225

    Article  CAS  PubMed  Google Scholar 

  4. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  5. Abbracchio MP (2006) International Union of Pharmacology. LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  Google Scholar 

  6. Khakh BS, Burnstock G, Kennedy CL et al (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    CAS  PubMed  Google Scholar 

  7. Fredholm BB, IJzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  8. Herbert JM, Savi P (2003) P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3:113–122

    Article  PubMed  Google Scholar 

  9. Fountain SJ, Parkinson K, Young MT et al (2007) An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature 448:200–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  11. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  12. Bradley A, Evans M, Kaufman MH et al (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  CAS  PubMed  Google Scholar 

  13. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 31:681–683

    Google Scholar 

  14. Li D, Qiu Z, Shao Y et al (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683

    Article  CAS  PubMed  Google Scholar 

  15. Metzger D, Clifford J, Chiba H et al (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dymecki SM (1996) A modular set of Flp, FRT and lacZ fusion vectors for manipulating genes by site-specific recombination. Gene 171:197–201

    Article  CAS  PubMed  Google Scholar 

  17. Chaiyachati BH, Kaundal R, Zhao J et al (2012) LoxP-FRT Trap (LOFT): a simple and flexible system for conventional and reversible gene targeting. BMC Biol 10:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitada K, Keng VW, Takeda J et al (2009) Generating mutant rats using the Sleeping Beauty transposon system. Methods 49:236–242

    Article  CAS  PubMed  Google Scholar 

  20. Furushima K, Jang CW, Chen DW et al (2012) Insertional mutagenesis by a hybrid piggyBac and Sleeping Beauty transposon in the rat. Genetics 192:1235–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carter M, Shieh J, Carter M et al (2010) Making and using transgenic organisms. In: Guide to research techniques in neuroscience. Elsevier B.V., Amsterdam, pp 243–262

    Chapter  Google Scholar 

  22. Bouabe H, Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064:315–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eisener-Dorman AF, Lawrence DA, Bolivar VJ (2009) Cautionary insights on knockout mouse studies: the gene or not the gene? Brain Behav Immun 23:318–324

    Article  CAS  PubMed  Google Scholar 

  24. Guan C, Ye C, Yang X et al (2010) A review of current large-scale mouse knockout efforts. Genesis 48:73–85

    CAS  PubMed  Google Scholar 

  25. Matherne GP, Linden J, Byford AM et al (1997) Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci U S A 94:6541–6546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johansson B, Halldner L, Dunwiddie TV et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98:9407–9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun D, Samuelson LC, Yang T et al (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98:9983–9988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Funakoshi H, Chan TO, Good JC et al (2006) Regulated overexpression of the A1-adenosine receptor in mice results in adverse but reversible changes in cardiac morphology and function. Circulation 114:2240–2250

    Article  CAS  PubMed  Google Scholar 

  29. Serchov T, Clement HW, Schwarz MK et al (2015) Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of homer1a. Neuron 87:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ledent C, Vaugeois JM, Schiffmann SN et al (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  CAS  PubMed  Google Scholar 

  31. Chen JF, Huang Z, Ma J et al (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giménez-Llort L, Schiffmann SN, Shmidt T et al (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56

    Article  PubMed  CAS  Google Scholar 

  33. Boknik P, Drzewiecki K, Eskandar J et al (2018) Phenotyping of mice with heart specific overexpression of A2A-adenosine receptors: evidence for cardioprotective effects of A2A-adenosine receptors. Front Pharmacol 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yang D, Zhang Y, Nguyen HG et al (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Belikoff BG, Hatfield S, Georgiev P et al (2011) A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J Immunol 275:4429–4434

    Google Scholar 

  36. Salvatore CA, Tilley SL, Latour AM et al (2000) Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275:4429–4434

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Z, Yaar R, Ladd D et al (2002) Overexpression of A3 adenosine receptors in smooth, cardiac, and skeletal muscle is lethal to embryos. Microvasc Res 63:61–69

    Article  CAS  PubMed  Google Scholar 

  38. Brown R, Ollerstam A, Johansson B et al (2001) Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol 281:R1362–R1367

    CAS  PubMed  Google Scholar 

  39. Lee HT, Xu H, Nasr SH et al (2004) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Ren Physiol 286:F298–F306

    Article  CAS  Google Scholar 

  40. Kim M, Chen SWC, Park SW et al (2009) Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int 75:809–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schweda F, Segerer F, Castrop H et al (2005) Blood pressure-dependent inhibition of renin secretion requires A1 adenosine receptors. Hypertension 46:780–786

    Article  CAS  PubMed  Google Scholar 

  42. Koeppen M, Eckle T, Eltzschig HK (2009) Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One 4:e6784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kochanek PM, Vagni VA, Janesko KL et al (2006) Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab 26:565–575

    Article  CAS  PubMed  Google Scholar 

  44. Zucchi R, Cerniway RJ, Ronca-Testoni S et al (2002) Effect of cardiac A1 adenosine receptor overexpression on sarcoplasmic reticulum function. Cardiovasc Res 53:326–333

    Article  CAS  PubMed  Google Scholar 

  45. Chan TO, Funakoshi H, Song J et al (2008) Cardiac-restricted overexpression of the A2A-adenosine receptor in FVB mice transiently increases contractile performance and rescues the heart failure phenotype in mice overexpressing the A1-adenosine receptor. Clin Transl Sci 1:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiodi V, Ferrante A, Ferraro L et al (2016) Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors. J Neurochem 136:907–917

    Article  CAS  PubMed  Google Scholar 

  47. Domenici MR, Chiodi V, Averna M et al (2018) Neuronal adenosine A2Areceptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: a rat model of Huntington’s disease. Purinergic Signal 14:235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnston-Cox H, Koupenova M, Yang D et al (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 7:e40584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eisenstein A, Carroll SH, Johnston-Cox H et al (2014) An adenosine receptor-Krüppel-like factor 4 protein axis inhibits adipogenesis. J Biol Chem 289:21071–21081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koupenova M, Johnston-Cox H, Vezeridis A et al (2012) A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 125:354–363

    Article  CAS  PubMed  Google Scholar 

  51. Zhong H, Shlykov SG, Molina JG et al (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 53:147–155

    Google Scholar 

  52. Harrison G (2002) Effects of A3 adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc Res 53:147–155

    Article  CAS  PubMed  Google Scholar 

  53. Cerniway RJ, Yang Z, Jacobson MA et al (2001) Targeted deletion of A(3) adenosine receptors improves tolerance to ischemia-reperfusion injury in mouse myocardium. Am J Physiol Heart Circ Physiol 281:H1751–H1758

    Article  CAS  PubMed  Google Scholar 

  54. Lee HT, Ota-Setlik A, Xu H et al (2003) A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol 284:F267–F273

    Article  CAS  PubMed  Google Scholar 

  55. Yang T, Zollbrecht C, Winerdal ME et al (2016) Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. J Am Heart Assoc 5:e003868

    PubMed  PubMed Central  Google Scholar 

  56. Hofer M, Pospíšil M, Dušek L et al (2014) Lack of adenosine A3 receptors causes defects in mouse peripheral blood parameters. Purinergic Signal 10:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hofer M, Pospíšil M, Dušek L et al (2013) Erythropoiesis-and thrombopoiesis-characterizing parameters in adenosine A3 receptor knock-out mice. Physiol Res 62:305–311

    CAS  PubMed  Google Scholar 

  58. Chen Y, Corriden R, Inoue Y et al (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    Article  CAS  PubMed  Google Scholar 

  59. Joós G, Jákim J, Kiss B et al (2017) Involvement of adenosine A3 receptors in the chemotactic navigation of macrophages towards apoptotic cells. Immunol Lett 183:62–72

    Article  PubMed  CAS  Google Scholar 

  60. Fedorova IM, Jacobson MA, Basile A et al (2003) Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration. Cell Mol Neurobiol 23:431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Björklund O, Shang M, Tonazzini I et al (2008) Adenosine A1and A3receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596:6–13

    Article  PubMed  CAS  Google Scholar 

  62. Rosito M, Deflorio C, Limatola C et al (2012) CXCL16 orchestrates adenosine A3 receptor and MCP-1/CCL2 activity to protect neurons from excitotoxic cell death in the CNS. J Neurosci 32:3154–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Björklund O, Halldner-Henriksson L, Yang J et al (2008) Decreased behavioral activation following caffeine, amphetamine and darkness in A3 adenosine receptor knock-out mice. Physiol Behav 95:668–676

    Article  PubMed  CAS  Google Scholar 

  64. Little JW, Ford A, Symons-Liguori AM et al (2015) Endogenous adenosine A3receptor activation selectively alleviates persistent pain states. Brain 138:28–35

    Article  PubMed  Google Scholar 

  65. Mulryan K, Gitterman DP, Lewis CJ et al (2000) Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 183:2801–2809

    Google Scholar 

  66. Cockayne DA, Dunn PM, Zhong Y et al (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol 567:621–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cockayne DA, Hamilton SG, Zhu QM et al (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407:1011–1015

    Article  CAS  PubMed  Google Scholar 

  68. Sim JA (2006) Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 26:9006–9009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamamoto K, Sokabe T, Matsumoto T et al (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137

    Article  CAS  PubMed  Google Scholar 

  70. Brône B, Moechars D, Marrannes R et al (2007) P2X currents in peritoneal macrophages of wild type and P2X4−/− mice. Immunol Lett 113:83–89

    Article  PubMed  CAS  Google Scholar 

  71. Yang T, Shen JB, Yang R et al (2014) Novel protective role of endogenous cardiac myocyte P2X4 receptors in heart failure. Circ Heart Fail 7:510–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim H, Walsh MC, Takegahara N et al (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7:196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. de Baaij JHF, Kompatscher A, Viering DHHM et al (2016) P2X6 knockout mice exhibit normal electrolyte homeostasis. PLoS One 11:e0156803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Solle M, Labasi J, Perregaux DG et al (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132

    Article  CAS  PubMed  Google Scholar 

  75. Chessell IP, Hatcher JP, Bountra C et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  CAS  PubMed  Google Scholar 

  76. Metzger MW, Walser SM, Aprile-Garcia F et al (2017) Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinergic Signal 13:153–170

    Article  CAS  PubMed  Google Scholar 

  77. Kaczmarek-Hajek K, Zhang J, Kopp R et al (2018) Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. Elife 7:e36217

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lecut C, Frederix K, Johnson DM et al (2009) P2X1 ion channels promote neutrophil chemotaxis through rho kinase activation. J Immunol 183:2801–2809

    Article  CAS  PubMed  Google Scholar 

  79. Lecut C, Faccinetto C, Delierneux C et al (2012) ATP-gated P2X1 ion channels protect against endotoxemia by dampening neutrophil activation. J Thromb Haemost 10:453–465

    Article  CAS  PubMed  Google Scholar 

  80. Ren J, Bian X, DeVries M et al (2003) P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 552:809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ryten M, Koshi R, Knight GE et al (2007) Abnormalities in neuromuscular junction structure and skeletal muscle function in mice lacking the P2X2 nucleotide receptor. Neuroscience 148:700–711

    Article  CAS  PubMed  Google Scholar 

  82. Rong W, Gourine AV, Cockayne DA et al (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23:11315–11321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhong Y, Dunn PM, Bardini M et al (2001) Changes in P2X receptor responses of sensory neurons from P2X3-deficient mice. Eur J Neurosci 14:1784–1792

    Article  CAS  PubMed  Google Scholar 

  84. Bian X, Ren J, DeVries M et al (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McIlwrath SL, Davis BM, Bielefeldt K (2009) Deletion of P2X3 receptors blunts gastro-oesophageal sensation in mice. Neurogastroenterol Motil 21:890–e66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eddy MC, Eschle BK, Barrows J et al (2009) Double P2X2/P2X3 purinergic receptor knockout mice do not taste NaCl or the artificial sweetener SC45647. Chem Senses 34:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sclafani A, Ackroff K (2014) Maltodextrin and fat preference deficits in “taste-blind” P2X2/P2X3 knockout mice. Chem Senses 39:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baxter AW, Choi SJ, Sim JA et al (2011) Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur J Neurosci 34:213–220

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ulmann L, Levavasseur F, Avignone E et al (2013) Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61:1306–1319

    Article  PubMed  Google Scholar 

  90. Khoja S, Huynh N, Asatryan L et al (2018) Reduced expression of purinergic P2X4 receptors increases voluntary ethanol intake in C57BL/6J mice. Alcohol 68:63–70

    Article  CAS  PubMed  Google Scholar 

  91. Wyatt LR, Finn DA, Khoja S et al (2014) Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res 39:1127–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wyatt LR, Godar SC, Khoja S et al (2013) Sociocommunicative and sensorimotor impairments in male P2X4-deficient mice. Neuropsychopharmacology 38:1993–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ulmann L, Hatcher JP, Hughes JP et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29:2290–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsuda M, Kuboyama K, Inoue T et al (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yan Z, Khadra A, Li S et al (2010) Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J Neurosci 30:14213–14224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Di Virgilio F, Dal Ben D, Sarti AC et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47(1):15–31

    Article  PubMed  CAS  Google Scholar 

  98. Young CNJ, Gorecki DC (2017) P2RX7 purinoceptor as a therapeutic target – the second coming? Front Chem 6:248

    Article  CAS  Google Scholar 

  99. Di Virgilio F, Schmalzing G, Markwardt F (2018) The elusive P2X7 macropore. Trends Cell Biol 28:392–404

    Article  PubMed  CAS  Google Scholar 

  100. Adriouch S, Dox C, Welge V et al (2002) Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J Immunol 169:4108–4112

    Article  CAS  PubMed  Google Scholar 

  101. Nicke A, Kuan YH, Masin M et al (2009) A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J Biol Chem 284:25813–25822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ke HZ, Qi H, Weidema AF et al (2003) Deletion of the P2X 7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367

    Article  CAS  PubMed  Google Scholar 

  103. Li J, Liu D, Ke HZ et al (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 13:243–253

    Google Scholar 

  104. Gartland A, Buckley KA, Hipskind RA et al (2003) Multinucleated osteoclast formation in vivo and in vitro by P2X7 receptor-deficient mice. Crit Rev Eukaryot Gene Expr 13:243–253

    CAS  PubMed  Google Scholar 

  105. Syberg S, Schwarz P, Petersen S et al (2012) Association between P2X7 receptor polymorphisms and bone status in mice. J Osteoporos 2012:637986

    PubMed  PubMed Central  Google Scholar 

  106. Syberg S, Petersen S, Beck Jensen JE et al (2012) Genetic background strongly influences the bone phenotype of P2X7 receptor knockout mice. J Osteoporos 2012:391097

    PubMed  PubMed Central  Google Scholar 

  107. Grygorowicz T, Dąbrowska-Bouta B, Strużyńska L (2018) Administration of an antagonist of P2X7 receptor to EAE rats prevents a decrease of expression of claudin-5 in cerebral capillaries. Purinergic Signal 14(4):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fabre JE, Nguyen M, Latour A et al (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5:1199–1202

    Article  CAS  PubMed  Google Scholar 

  109. Léon C, Hechler B, Freund M et al (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1receptor-null mice. J Clin Invest 104:1731–1737

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hwang SJ, Blair PJ, Durnin L et al (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590:1957–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Homolya L, Watt WC, Lazarowski ER et al (1999) Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from normal and P2Y2 receptor (−/−) mice. J Biol Chem 274:26454–26460

    Article  CAS  PubMed  Google Scholar 

  112. Robaye B, Ghanem E, Wilkin F et al (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol 63:777–783

    Article  CAS  PubMed  Google Scholar 

  113. Bar I, Guns P-J, Metallo J et al (2008) Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol Pharmacol 74:777–784

    Article  CAS  PubMed  Google Scholar 

  114. Giannattasio G, Ohta S, Boyce JR et al (2011) The P2Y6 receptor inhibits effector T cell activation in allergic pulmonary inflammation. J Immunol 187:1486–1495

    Article  CAS  PubMed  Google Scholar 

  115. Garcia RA, Yan M, Search D et al (2014) P2Y6receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development. PLoS One 9:e111385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Li R, Tan B, Yan Y et al (2014) Extracellular UDP and P2Y6 function as a danger signal to protect mice from vesicular stomatitis virus infection through an increase in IFN-β production. J Immunol 193:4515–4526

    Article  CAS  PubMed  Google Scholar 

  117. Foster CJ, Prosser DM, Agans JM et al (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107:1591–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. André P, Delaney SM, LaRocca T et al (2003) P2Y12regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 112:398–406

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fabre AC, Malaval C, Ben Addi A et al (2010) P2Y13 receptor is critical for reverse cholesterol transport. Hepatology 52:1477–1483

    Article  CAS  PubMed  Google Scholar 

  120. Bassil AK, Bourdu S, Townson KA et al (2009) UDP-glucose modulates gastric function through P2Y14 receptor-dependent and -independent mechanisms. Am J Physiol Gastrointest Liver Physiol 296:G923–G930

    Article  CAS  PubMed  Google Scholar 

  121. Meister J, Le Duc D, Ricken A et al (2014) The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J Biol Chem 289:23353–23366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gil V, Martínez-Cutillas M, Mañé N et al (2013) P2Y1 knockout mice lack purinergic neuromuscular transmission in the antrum and cecum. Neurogastroenterol Motil 25:e170–e182

    Article  CAS  PubMed  Google Scholar 

  123. Matos JE, Robaye B, Boeynaems JM et al (2005) K+ secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J Physiol 564:269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Horckmans M, Robaye B, Léon-Gómez E et al (2012) P2Y4 nucleotide receptor: a novel actor in post-natal cardiac development. Angiogenesis 15:349–360

    Article  CAS  PubMed  Google Scholar 

  125. Horckmans M, Leon-Gomez E, Robaye B et al (2012) Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise. AJP Heart Circ Physiol 303:H835–H843

    Article  CAS  Google Scholar 

  126. Kauffenstein G, Tamareille S, Prunier F et al (2016) Central role of P2Y6 UDP receptor in arteriolar myogenic tone. Arterioscler Thromb Vasc Biol 36:1598–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Clouet S, Di Pietrantonio L, Daskalopoulos EP et al (2016) Loss of mouse P2Y6nucleotide receptor is associated with physiological macrocardia and amplified pathological cardiac hypertrophy. J Biol Chem 291:15841–15852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Placet M, Arguin G, Molle CM et al (2018) The G protein-coupled P2Y6 receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol basis Dis 1864:1539–1551

    Article  CAS  PubMed  Google Scholar 

  129. Liverani E, Rico MC, Yaratha L et al (2014) LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol 95:313–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Li D, Wang Y, Zhang L et al (2012) Roles of purinergic receptor P2Y, G protein-coupled 12 in the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 32:e81–e89

    CAS  PubMed  Google Scholar 

  131. Harada K, Matsumoto Y, Umemura K (2011) Adenosine diphosphate receptor P2Y12-mediated migration of host smooth muscle-like cells and leukocytes in the development of transplant arteriosclerosis. Transplantation 92:148–154

    Article  CAS  PubMed  Google Scholar 

  132. Ben Addi A, Cammarata D, Conley PB et al (2010) Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J Immunol 185:5900–5906

    Article  CAS  PubMed  Google Scholar 

  133. Haynes SE, Hollopeter G, Yang G et al (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519

    Article  CAS  PubMed  Google Scholar 

  134. Gu N, Eyo UB, Murugan M et al (2016) Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain. Brain Behav Immun 55:82–92

    Article  CAS  PubMed  Google Scholar 

  135. Su X, Floyd DH, Hughes A et al (2012) The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest 122:3579–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang Y, Sun Y, Li D et al (2013) Platelet P2Y12 is involved in murine pulmonary metastasis. PLoS One 8:e80780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Wang N, Robaye B, Agrawal A et al (2012) Reduced bone turnover in mice lacking the P2Y13 receptor of ADP. Mol Endocrinol 26:142–152

    Article  CAS  PubMed  Google Scholar 

  138. Wang N, Rumney RMH, Yang L et al (2013) The P2Y13 receptor regulates extracellular ATP metabolism and the osteogenic response to mechanical loading. J Bone Miner Res 28:1446–1456

    Article  CAS  PubMed  Google Scholar 

  139. Wang N, Robaye B, Gossiel F et al (2014) The P2Y13 receptor regulates phosphate metabolism and FGF-23 secretion with effects on skeletal development. FASEB J 28:2249–2259

    Article  CAS  PubMed  Google Scholar 

  140. Kafkafi N, Benjamini Y, Sakov A et al (2005) Genotype-environment interactions in mouse behavior: a way out of the problem. Proc Natl Acad Sci U S A 102:4619–4624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Richter SH, Garner JP, Würbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261

    Article  CAS  PubMed  Google Scholar 

  142. Karp NA, Melvin D, Mott RF (2012) Robust and sensitive analysis of mouse knockout phenotypes. PLoS One 7:e52410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ellenbroek B, Youn J (2016) Rodent models in neuroscience research: is it a rat race? Dis Model Mech 9:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Polish Ministry of National Defence project “Kościuszko” no: 523/2017/DA and the EU COST Program (BM1406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz C. Górecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rumney, R.M.H., Górecki, D.C. (2020). Knockout and Knock-in Mouse Models to Study Purinergic Signaling. In: Pelegrín, P. (eds) Purinergic Signaling. Methods in Molecular Biology, vol 2041. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9717-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9717-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9716-9

  • Online ISBN: 978-1-4939-9717-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics