Skip to main content

Electrophysiological Investigation of Microglia

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2034))

Abstract

Although microglial cells are not electrically excitable, they express a large repertoire of ion channels that are activated by voltage, stretch, extracellular ligands, or intracellular pathways (e.g. Ca2+, G-proteins). The patch-clamp technique is the electrophysiological method of choice to study these channels whose expression varies largely in pathological conditions but also during normal development and aging. This chapter focuses on protocols allowing the recording and the analysis of these channels in acute brain slices, with a particular emphasis on the study of channels activated by extracellular ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eder C (2010) Ion channels in monocytes and microglia/brain macrophages: promising therapeutic targets for neurological diseases. J Neuroimmunol 224(1–2):51–55

    Article  CAS  Google Scholar 

  2. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  Google Scholar 

  3. Stebbing MJ, Cottee JM, Rana I (2015) The role of ion channels in microglial activation and proliferation—a complex interplay between ligand-gated ion channels, K+ channels, and intracellular Ca2+. Front Immunol. https://doi.org/10.3389/fimmu.2015.00497

  4. Kettenmann H, Hoppe D, Gottmann K, Banati R, Kreutzberg G (1990) Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J Neurosci Res 26(3):278–287

    Article  CAS  Google Scholar 

  5. Norenberg W, Gebicke-Haerter PJ, Illes P (1994) Voltage-dependent potassium channels in activated rat microglia. J Physiol 475(1):15–32

    Article  CAS  Google Scholar 

  6. Visentin S, Agresti C, Patrizio M, Levi G (1995) Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-γ. J Neurosci Res. https://doi.org/10.1002/jnr.490420402

    Article  CAS  Google Scholar 

  7. Pyo H, Chung S, Jou I, Gwag B, Joe EH (1997) Expression and function of outward K+ channels induced by lipopolysaccharide in microglia. Mol Cells

    Google Scholar 

  8. Boucsein C, Kettenmann H, Nolte C (2000) Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 12(6):2049–2058

    Article  CAS  Google Scholar 

  9. Arnoux I et al (2013) Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61(10):1582–1594

    Article  Google Scholar 

  10. Schilling T et al (2000) Upregulation of Kv1.3 K(+) channels in microglia deactivated by TGF-beta. Am J Physiol Cell Physiol 279(4):C1123–C1134

    Article  CAS  Google Scholar 

  11. Schilling T, Eder C (2015) Microglial K+channel expression in young adult and aged mice. Glia. https://doi.org/10.1002/glia.22776

    Article  Google Scholar 

  12. Rassendren F, Audinat E (2016) Purinergic signaling in epilepsy. J Neurosci Res 94(9). https://doi.org/10.1002/jnr.23770

    Article  CAS  Google Scholar 

  13. Haque ME, Kim I-S, Jakaria M, Akther M, Choi D-K (2018) Importance of GPCR-mediated microglial activation in Alzheimer’s disease. Front Cell Neurosci 12:258

    Article  Google Scholar 

  14. Schilling T, Eder C (2013) Patch clamp protocols to study ion channel activity in microglia. Methods Mol Biol 1041:163–182

    Article  Google Scholar 

  15. Avignone E, Ulmann L, Levavasseur F, Rassendren F, Audinat E (2008) Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling. J Neurosci 28(37):9133–9144

    Article  CAS  Google Scholar 

  16. Jung S et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  CAS  Google Scholar 

  17. Wolf Y, Yona S, Kim KW, Jung S (2013) Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 7:26

    Article  CAS  Google Scholar 

  18. Arnoux I, Audinat E (2015) Fractalkine signaling and microglia functions in the developing brain. Neural Plast 80(1):43–56

    Google Scholar 

  19. Hirasawa T et al (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res. https://doi.org/10.1002/jnr.20480

    Article  CAS  Google Scholar 

  20. Sasmono RT, Williams E (2012) Generation and characterization of MacGreen mice, the Cfs1r-EGFP transgenic mice. Methods Mol Biol. https://doi.org/10.1007/978-1-61779-527-5_11

    Google Scholar 

  21. Ting JT et al (2018) Preparation of acute brain slices using an optimized N-methyl-D-glucamine protective recovery method. J Vis Exp. https://doi.org/10.3791/53825

  22. Morin-Brureau M et al (2018) Microglial phenotypes in the human epileptic temporal lobe. Brain 141(12):3343–3360

    Article  Google Scholar 

  23. Madry C et al (2018) Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1715354115

    Article  CAS  Google Scholar 

  24. Schwendele B, Brawek B, Hermes M, Garaschuk O (2012) High-resolution in vivo imaging of microglia using a versatile nongenetically encoded marker. Eur J Immunol. https://doi.org/10.1002/eji.201242436

    Article  CAS  Google Scholar 

  25. Davalos D et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  Google Scholar 

  26. Farber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch 452(5):615–621

    Article  Google Scholar 

  27. Tsuda M, Inoue K (2016) Neuron-microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2015.08.042

    Article  CAS  Google Scholar 

  28. Lutz C et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5(9):821–827

    Article  CAS  Google Scholar 

  29. Rogers JT et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31(45):16241–16250

    Article  CAS  Google Scholar 

  30. Maggi L et al (2011) CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front Cell Neurosci 5:22

    Article  CAS  Google Scholar 

  31. Milior G et al (2016) Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun 998:149–157. https://doi.org/10.1016/j.bbi.2015.07.024

    Article  CAS  Google Scholar 

  32. Linley JE (2013) Perforated whole-cell patch-clamp recording. Methods Mol Biol 998:149–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in Audinat lab is funded by grants from the Fondation pour la Recherche Médicale (FRM: DEQ20140329488) and the European Union (ERA-NET Neuron BrIE; H2020-MSCA-ITN EU-gliaPhD 722053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Audinat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Avignone, E., Milior, G., Arnoux, I., Audinat, E. (2019). Electrophysiological Investigation of Microglia. In: Garaschuk, O., Verkhratsky, A. (eds) Microglia. Methods in Molecular Biology, vol 2034. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9658-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9658-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9657-5

  • Online ISBN: 978-1-4939-9658-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics