Skip to main content

Intracellular Loading and Rapid Calcium Imaging in Processes of Hippocampal Astrocytes

  • Protocol
  • First Online:
Multidisciplinary Tools for Investigating Synaptic Plasticity

Part of the book series: Neuromethods ((NM,volume 81))

Abstract

In the brain, astrocytes modulate the transfer of information between neurons at the level of the synapse. Following their activation via receptors during synaptic transmission, these glial cells encode and in turn regulate the efficacy of transmission through calcium-dependent mechanisms. Although astrocytes are the most numerous glial cells in the brain, other glial cell types are also present. Furthermore, astrocytes form an intricate and ramified morphological network with neurons. Hence, the study of the role of astrocytes in synaptic transmission requires the use of techniques allowing their specific loading with various compounds such as calcium indicators and drugs to respectively monitor and modulate their activity. Importantly, these techniques must permit the study of astrocyte activity in their processes, the location where the rapid and privileged interactions with synapses take place. In order to identify the astrocytes and introduce molecules specifically into them, we use the patch clamp recording technique in whole-cell configuration. Here we describe individual steps necessary to carry out patch-clamp recordings in parallel with calcium imaging at the level of astrocyte processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  2. Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    PubMed  CAS  Google Scholar 

  3. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  4. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  5. Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    PubMed  CAS  Google Scholar 

  6. Latour I, Gee CE, Robitaille R, Lacaille JC (2001) Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus 11:132–145

    Article  PubMed  CAS  Google Scholar 

  7. Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G (2004) Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43:729–743

    Article  PubMed  CAS  Google Scholar 

  8. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  PubMed  CAS  Google Scholar 

  9. Panatier A, Theodosis DT, Mothet J-P, Touquet B, Pollegioni L, Poulain DA, Oliet SHR (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Article  PubMed  CAS  Google Scholar 

  10. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  PubMed  CAS  Google Scholar 

  11. Serrano A, Haddjeri N, Lacaille J-C, Robitaille R (2006) Gabaergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382

    Article  PubMed  CAS  Google Scholar 

  12. Halassa MM, Haydon PG (2010) Integrated brain circuits, astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  PubMed  CAS  Google Scholar 

  13. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements. The revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  14. D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM, Janigro D (1998) Functional specialization and topographic segregation of hippocampal astrocytes. J Neurosci 18:4425–4438

    PubMed  Google Scholar 

  15. Matthias K, Kirchhoff F, Seifert G, Hüttmann K, Matyash M, Kettenmann H, Steinhäuser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758

    PubMed  CAS  Google Scholar 

  16. Serrano A, Robitaille R, Lacaille J-C (2008) Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia 56:1648–1663

    Article  PubMed  Google Scholar 

  17. Zhou M (2005) Development of GLAST(+) astrocytes and NG2(+) glia in rat hippocampus CA1: mature astrocytes are electrophysiologically passive. J Neurophysiol 95:134–143

    Article  PubMed  Google Scholar 

  18. Zhou W, Ge W-P, Zeng S, Duan S, Luo Q (2007) Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices. Biochem Biophys Res Commun 352:598–602

    Article  PubMed  CAS  Google Scholar 

  19. Wallraff A, Odermatt B, Willecke K, Steinhäuser C (2004) Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48:36–43

    Article  PubMed  Google Scholar 

  20. Panatier A, Vallée J, Haber M, Murai KK, Lacaille JC, Robitaille R (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  PubMed  CAS  Google Scholar 

  21. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151

    Article  PubMed  CAS  Google Scholar 

  22. Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K (2004) Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004:pl5

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Panatier, A., Robitaille, R. (2013). Intracellular Loading and Rapid Calcium Imaging in Processes of Hippocampal Astrocytes. In: Nguyen, P. (eds) Multidisciplinary Tools for Investigating Synaptic Plasticity. Neuromethods, vol 81. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-517-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-517-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-516-3

  • Online ISBN: 978-1-62703-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics