Skip to main content

Antisense RNA Elements for Downregulating Expression

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1927))

Abstract

Antisense RNA (asRNA) technology is an important tool for downregulating gene expression. When applying this strategy, the asRNA interference efficiency is determined by several elements including scaffold design, loop size, and relative abundance. Here, we take the Escherichia coli gene fabD encoding malonyl-CoA-[acyl-carrier-protein] transacylase as an example to describe the asRNA design with reliable and controllable interference efficiency. Real-time PCR and fluorescence assay methods are introduced to detect the interference efficiency at RNA level and protein level, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weintraub H, Izant JG, Harland RM (1985) Anti-sense Rna as a molecular tool for genetic-analysis. Trends Genet 1:22–25

    Article  CAS  Google Scholar 

  2. Chen GZ, Patten CL, Schellhorn HE (2003) Controlled expression of an rpoS antisense RNA can inhibit RpoS function in Escherichia coli. Antimicrob Agents Ch 47:3485–3493

    Article  CAS  Google Scholar 

  3. Yin DZ, Ji YD (2002) Genomic analysis using conditional phenotypes generated by antisense RNA. Curr Opin Microbiol 5:330–333

    Article  CAS  Google Scholar 

  4. Ji YD, Yin DZ, Fox B, Holmes DJ, Payne D, Rosenberg M (2004) Validation of antibacterial mechanism of action using regulated antisense RNA expression in Staphylococcus aureus. FEMS Microbiol Lett 231:177–184

    Article  CAS  Google Scholar 

  5. Rasmussen LCV, Sperling-Petersen HU, Mortensen KK (2007) Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Factories 6

    Article  Google Scholar 

  6. Carpousis AJ (2003) Degradation of targeted mRNAs in Escherichia coli: regulation by a small antisense RNA. Genes Dev 17:2351–2355

    Article  CAS  Google Scholar 

  7. Wagner EGH, Altuvia S, Romby P (2002) Antisense RNAs in bacteria and their genetic elements. Adv Genet 46:361–398

    Article  CAS  Google Scholar 

  8. Tilley LD, Hine OS, Kellogg JA, Hassinger JN, Weller DD, Iversen PL, Geller BL (2006) Gene-specific effects of antisense phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia coli and Salmonella enterica serovar typhimurium in pure culture and in tissue culture. Antimicrob Agents Ch. 50:2789–2796

    Article  CAS  Google Scholar 

  9. Ross JA, Ellis MJ, Hossain S, Haniford DB (2013) Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA 19:670–684

    Article  CAS  Google Scholar 

  10. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  Google Scholar 

  11. Nakashima N, Tamura T, Good L (2006) Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res 34:e138

    Article  Google Scholar 

  12. Nakashimaand N, Tamura T (2009) Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res 37:e103

    Article  Google Scholar 

  13. Yang YP, Lin YH, Li LY, Linhardt RJ, Yan YJ (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226

    Article  CAS  Google Scholar 

  14. Cruzand C, Houseley J (2014) Endogenous RNA interference is driven by copy number. Elife 3

    Google Scholar 

  15. Livakand KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, Y., Wang, J., Zhang, R., Yan, Y. (2019). Antisense RNA Elements for Downregulating Expression. In: Santos, C., Ajikumar, P. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 1927. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9142-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9142-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9141-9

  • Online ISBN: 978-1-4939-9142-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics