Skip to main content

Identification of Antisense RNA Stem-Loops That Inhibit RNA–Protein Interactions Using a Bacterial Reporter System

  • Protocol
  • First Online:
RNA-RNA Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1240))

Abstract

RNA–protein interactions play important roles in gene regulation, functional RNA–protein complexes such as the ribosome, and in viral replication. Molecules that regulate specific RNA–protein interactions may be used to dissect biological processes, and to establish the validity of targeting an RNA–protein interaction. There are many examples of biological regulation by antisense RNA stem-loops that form loop-loop and loop-linear RNA–RNA interactions. Here, a bacterial reporter system for the identification of RNA stem-loops that inhibit the formation of RNA–protein complexes through RNA–RNA interactions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vickers TA, Wyatt JR, Freier SM (2000) Effects of RNA secondary structure on cellular antisense activity. Nucleic Acids Res 28:1340–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Vickers TA et al (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Article  CAS  PubMed  Google Scholar 

  3. Eguchi Y, Itoh T, Tomizawa J (1991) Antisense RNA. Annu Rev Biochem 60:631–652

    Article  CAS  PubMed  Google Scholar 

  4. Wagner EG, Simons RW (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 48:713–742

    Article  CAS  PubMed  Google Scholar 

  5. Brunel C, Marquet R, Romby P, Ehresmann C (2002) RNA loop-loop interactions as dynamic functional motifs. Biochimie 84:925–944

    Article  CAS  PubMed  Google Scholar 

  6. Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281

    Article  CAS  PubMed  Google Scholar 

  7. Franklin NC (1993) Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J Mol Biol 231:343–360

    Article  CAS  PubMed  Google Scholar 

  8. Harada K, Martin SS, Frankel AD (1996) Selection of RNA-binding peptides in vivo. Nature 380:175–179

    Article  CAS  PubMed  Google Scholar 

  9. Hall KB (1994) Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry 33:10076–10088

    Article  CAS  PubMed  Google Scholar 

  10. Yano A et al (2010) Identification of antisense RNA stem-loops that inhibit RNA–protein interactions using a bacterial reporter system. Nucleic Acids Res 38:3489–3501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Harada K, Frankel AD (1999) Screening RNA-binding libraries using a bacterial transcription antitermination assay. In: Haynes SR (ed) RNA-protein interactions protocols, methods in molecular biology, vol 118. Humana, New York, pp 177–187

    Chapter  Google Scholar 

  12. Horiya S et al (2009) Replacement of the λ boxB RNA-N peptide with heterologous RNA-peptide interactions relaxes the strict spatial requirements for the formation of a transcription antitermination complex. Mol Microbiol 74:85–97

    Article  CAS  PubMed  Google Scholar 

  13. Eguchi Y, Tomizawa J (1991) Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColE1 Rom protein. J Mol Biol 220:831–842

    Article  CAS  PubMed  Google Scholar 

  14. Duconge F, Di Primo C, Toulme JJ (2000) Is a closing "GA pair" a rule for stable loop-loop RNA complexes? J Biol Chem 275:21287–21294

    Article  CAS  PubMed  Google Scholar 

  15. Jossinet F et al (1999) Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding. RNA 5:1222–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dardel F et al (1998) Solution studies of the dimerization initiation site of HIV-1 genomic RNA. Nucleic Acids Res 26:3567–3571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Mujeeb A et al (1998) Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat Struct Biol 5:432–436

    Article  CAS  PubMed  Google Scholar 

  18. Ennifar E et al (2001) Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat Struct Biol 8:1064–1068

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Harada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Harada, K. (2015). Identification of Antisense RNA Stem-Loops That Inhibit RNA–Protein Interactions Using a Bacterial Reporter System. In: Schmidt, F. (eds) RNA-RNA Interactions. Methods in Molecular Biology, vol 1240. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1896-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1896-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1895-9

  • Online ISBN: 978-1-4939-1896-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics