Skip to main content

Noninvasive Monitoring of Suicide Gene Therapy by Using Multimodal Molecular Imaging

  • Protocol
  • First Online:
Suicide Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1895))

Abstract

Cells expressing suicide genes can be used as therapeutic vehicles for difficult-to-treat tumors, for example, if stem cells are used that are able to track infiltrating tumor cells. An alternative application of suicide gene expression is their use as a safety switch in regenerative medicine where the presence of a few pluripotent stem cells could potentially cause unwanted side effects like the formation of teratoma. One potential bottleneck of these applications is that information on the initiation of cell suicide is needed early on, for example, when therapeutic cells have reached infiltrating tumor cells or when teratomas are formed. Therefore, in vivo imaging methods are needed that provide information on target location, (stem) cell location, (stem) cell viability, pathology, and suicide gene expression. This requires multimodal imaging approaches that can provide this information longitudinally and in a noninvasive way. Here, we describe examples of how therapeutic cells can be modified so that they express a suicide gene and genes that can be used for in vivo visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leten C, Trekker J, Struys T, Dresselaers T, Gijsbers R, Vande Velde G, Lambrichts I, Van der Linden A, Verfaillie CM, Himmelreich U (2015) Assessment of bystander killing-mediated therapy of malignant brain tumors using a multimodal imaging approach. Stem Cell Res Ther 6:163

    Article  Google Scholar 

  2. Burns TC, Steinberg GK (2011) Stem cells and stroke: opportunities, challenges and strategies. Expert Opin Biol Ther 11:447–461

    Article  Google Scholar 

  3. Gürsel DB, Berry N, Boockvar JA (2012) Therapeutic stem cells encapsulated in a synthetic extracellular matrix selectively kill tumor cells, delay tumor growth, and increase survival in a mouse resection model of malignant glioma. Neurosurgery 70:N17–N19

    Article  Google Scholar 

  4. Kucerova L, Altanerova V, Matuskova M et al (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67:6304–6313

    Article  CAS  Google Scholar 

  5. Miletic H, Fischer Y, Litwak S et al (2007) Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 15:1373–1381

    Article  CAS  Google Scholar 

  6. Matuskova M, Hlubinova K, Pastorakova A et al (2010) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290:58–67

    Article  CAS  Google Scholar 

  7. Leten C, Trekker J, Struys T, Roobrouck VD, Dresselaers T, Vande Velde G, Lambrichts I, Verfaillie CM, Himmelreich U (2016) Monitoring the bystander killing effect of human multipotent stem cells for treatment of malignant brain tumors. Stem Cells Int 2016:e4095072

    Article  Google Scholar 

  8. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255

    Article  Google Scholar 

  9. Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8:3822–3830

    Article  CAS  Google Scholar 

  10. Leten C, Roobrouck VD, Struys T et al (2014) Controlling and monitoring stem cell safety in vivo in an experimental rodent model. Stem Cells 32:2833–2844

    Article  CAS  Google Scholar 

  11. Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V (2012) Suicide gene therapy in cancer: where do we stand now? Cancer Lett 324:160–170

    Article  CAS  Google Scholar 

  12. Neyrinck K, Breuls N, Holvoet B et al (2018) The human somatostatin receptor type 2 as an imaging and suicide reporter gene for pluripotent stem cell-derived therapy of myocardial infarction. Theranostics 8: 2799–2813

    Google Scholar 

  13. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B et al (2017) Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med 376:125–135

    Article  CAS  Google Scholar 

  14. Mori K, Iwata J, Miyazaki M, Osada H, Tange Y, Yamamoto T et al (2010) Bystander killing effect of thymidine kinase gene-transduced adult bone marrow stromal cells with ganciclovir on malignant glioma cells. Neurol Med Chir (Tokyo) 50:545–553

    Article  Google Scholar 

  15. Deroose CM, Reumers V, Gijsbers R, Bormans G, Debyser Z, Mortelmans L et al (2006) Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol Ther 14:423–431

    Article  CAS  Google Scholar 

  16. Waerzeggers Y, Klein M, Miletic H, Himmelreich U, Li H, Monfared P et al (2008) Multimodal imaging of neural progenitor cell fate in rodents. Mol Imaging 7:77–91

    Article  Google Scholar 

  17. Himmelreich U, Hoehn M (2008) Stem cell labeling for magnetic resonance imaging. Minim Invasive Ther Allied Technol 17:132–142

    Article  Google Scholar 

  18. Wolfs E, Holvoet B, Gijsbers R, Casteels C, Roberts SJ, Struys T et al (2014) Optimization of multimodal imaging of mesenchymal stem cells using the human sodium iodide symporter for PET and Cerenkov luminescence imaging. PLoS One 9:e94833

    Article  Google Scholar 

  19. Wolfs E, Holvoet B, Ordovas L, Breuls N, Helsen N, Schönberger M et al (2017) Molecular imaging of human embryonic stem cells stably expressing human PET reporter genes after zinc finger nuclease-mediated genome editing. J Nucl Med 58:1659–1665

    Article  CAS  Google Scholar 

  20. Himmelreich U, Dresselaers T (2009) Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 48:112–124

    Article  CAS  Google Scholar 

  21. Jacobs AH, Winkeler A, Hartung M, Slack M, Dittmar C, Kummer C (2003) Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 14:277–297

    Article  CAS  Google Scholar 

  22. Miletic H, Fischer YH, Giroglou T, Rueger MA, Winkeler A, Li H, Himmelreich U et al (2007) Normal brain cells contribute to the bystander effect in suicide gene therapy of malignant glioma. Clin Cancer Res 13:6761–6768

    Article  CAS  Google Scholar 

  23. Chiba K, Hockemeyer D (2015) Genome editing in human pluripotent stem cells using site-specific nucleases. Methods Mol Biol 1239:267–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Himmelreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holvoet, B., Leten, C., Deroose, C.M., Himmelreich, U. (2019). Noninvasive Monitoring of Suicide Gene Therapy by Using Multimodal Molecular Imaging. In: Düzgüneş, N. (eds) Suicide Gene Therapy. Methods in Molecular Biology, vol 1895. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8922-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8922-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8921-8

  • Online ISBN: 978-1-4939-8922-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics