Skip to main content

Genome Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases

  • Protocol
  • First Online:
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1239))

Abstract

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) (Thomson, Science 282:1145–1147, 1998; Takahashi et al. Cell 131:861–872, 2007), collectively referred to as pluripotent stem cells (hPSCs), are currently used in disease modeling to address questions specific to humans and to complement our insight gained from model organisms (Soldner et al. Cell 146:318–331, 2011; Soldner and Jaenisch, Science 338:1155–1156, 2012). Recently, genetic engineering using site-specific nucleases has been established in hPSCs (Hockemeyer et al. Nat Biotechnol 27:851–857, 2009; Hockemeyer et al., Nat Biotechnol 29:731–734, 2011; Zou et al., Cell Stem Cell 5:97–110, 2011; Yusa et al., Nature 478:391–394, 2011; DeKelver et al., Genome Res 20:1133–1142, 2010), allowing a level of genetic control previously limited to model systems. Thus, we can now perform targeted gene knockouts, generate tissue-specific cell lineage reporters, overexpress genes from a defined locus, and introduce and repair single point mutations in hPSCs. This ability to genetically engineer pluripotent stem cells will significantly facilitate the study of human disease in a defined genetic context. Here we outline protocols for efficient gene targeting in hPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  3. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146(2):318–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Soldner F, Jaenisch R (2012) Medicine. iPSC disease modeling. Science 338(6111):1155–1156

    Article  PubMed  Google Scholar 

  5. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zou J, Maeder M, Mali P, Pruett-Miller S, Thibodeau-Beganny S, Chou B, Chen G, Ye Z, Park I, Daley G et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5(1):97–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, Miranda E, Ordóñez A, Hannan NRF, Rouhani FJ et al (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, Sancak Y, Cui X, Steine EJ, Miller JC et al (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20(8):1133–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM, Santiago Y, Lee AH, Vo TD, Doyon Y, Miller JC et al: Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology 2011, 13(3):331–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Forster R, Chiba K, Schaeffer L, Regalado SG, Lai CS, Gao Q, Kiani S, Farin HF, Clevers H, Cost GJ et al: Human Intestinal Tissue with Adult Stem Cell Properties Derived from Pluripotent Stem Cells. Stem Cell Reports 2014, 2(6):838–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Grassart A, Cheng AT, Hong SH, Zhang F, Zenzer N, Feng Y, Briner DM, Davis GD, Malkov D, Drubin DG: Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. The Journal of Cell Biology 2014, 205(5):721–735

    Article  CAS  PubMed  Google Scholar 

  13. Sexton AN, Regalado SG, Lai CS, Cost GJ, O'Neil CM, Urnov FD, Gregory PD, Jaenisch R, Collins K, Hockemeyer D: Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes & Development 2014, 28(17):1885–1899

    Article  CAS  Google Scholar 

  14. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764

    Article  CAS  PubMed  Google Scholar 

  15. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    Article  PubMed  Google Scholar 

  16. Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12(6):224–228

    Article  CAS  PubMed  Google Scholar 

  17. Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651

    Article  CAS  PubMed  Google Scholar 

  18. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  19. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501

    Article  CAS  PubMed  Google Scholar 

  20. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2010) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  PubMed  Google Scholar 

  21. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64(1):475–493

    Article  CAS  PubMed  Google Scholar 

  23. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  24. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2:e00471

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  Google Scholar 

  30. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee Y-L et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26(7):808–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Smith JR, Maguire S, Davis LA, Alexander M, Yang F, Chandran S, ffrench-Constant C, Pedersen RA (2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells 26(2):496–504

    Article  CAS  PubMed  Google Scholar 

  33. Lee HJ, Kim E, Kim JS (2010) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20(1):81–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Orlando SJ, Santiago Y, Dekelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J et al (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res 38(15):e152

    Google Scholar 

  35. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J et al (2010) Derivation of Pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141(5):872–883

    Article  CAS  PubMed  Google Scholar 

  37. Tucker KL, Wang Y, Dausman J, Jaenisch R (1997) A transgenic mouse strain expressing four drug-selectable marker genes. Nucleic Acids Res 25(18):3745–3746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biology 649:247–256

    Article  CAS  Google Scholar 

  39. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9):753–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Radecke S, Radecke F, Cathomen T, Schwarz K (2009) Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther 18(4):743–753

    Article  Google Scholar 

  41. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA et al (2008) Rapid “Open-Source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yang B, Wen X, Kodali NS, Oleykowski CA, Miller CG, Kulinski J, Besack D, Yeung JA, Kowalski D, Yeung AT (2000) Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39(13):3533–3541

    Article  CAS  PubMed  Google Scholar 

  43. Donnelly ML, Hughes LE, Luke G, Mendoza H, ten Dam E, Gani D, Ryan MD (2001) The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J Gen Virol 82(Pt 5):1027–1041

    CAS  PubMed  Google Scholar 

  44. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS et al (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hockemeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chiba, K., Hockemeyer, D. (2015). Genome Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases. In: Pruett-Miller, S. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 1239. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1862-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1862-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1861-4

  • Online ISBN: 978-1-4939-1862-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics