Skip to main content

Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass

  • Protocol
  • First Online:
Transgenic Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1864))

Abstract

Switchgrass (Panicum virgatum L.) is one of the most important bioenergy crops for lignocellulose ethanol production. Molecular breeding provides a powerful tool to supplement conventional switchgrass breeding by introducing or editing genes of interest. In this chapter, we describe Agrobacterium tumefaciens-mediated transformation protocols for lowland tetraploid switchgrass cultivar Alamo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vogel KP (2004) Switchgrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses, Agronomy monograph, vol 45. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  2. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenerg 28:515–535

    Article  Google Scholar 

  3. Bouton J (2008) Improvements of switchgrass as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, Berlin, Heidelberg

    Google Scholar 

  4. Merrick P, Fei SZ (2015) Plant regeneration and genetic transformation in switchgrass – a review. J Integr Agric 14(3):483–493. https://doi.org/10.1016/S2095-3119(14)60921-7

    Article  CAS  Google Scholar 

  5. Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  6. Somleva MN (2006) Switchgrass (Panicum virgatum L.). In: Wang K (ed) Methods in molecular biology, Agrobacterium protocols, vol 344. Humana Press Inc, Totowa

    Google Scholar 

  7. Somleva M, Snell K, Beaulieu J, Peoples O, Garrison B, Patterson N (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6:663–678

    Article  CAS  Google Scholar 

  8. Burris JN, Mann DGJ, Joyce BL, Stewart CN (2009) An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass. BioEnergy Res 2:267–274

    Article  Google Scholar 

  9. Xi Y, Fu C, Ge Y, Nandakumar R, Hisano H, Bouton J, Wang Z-Y (2009) Agrobacterium-mediated transformation of switchgrass and inheritance of the transgenes. BioEnerg Res 2:275–283

    Article  Google Scholar 

  10. Richards HA, Rudas VA, Sun H, McDaniel JK, Tomaszewski Z, Conger BV (2001) Construction of a GFP-BAR plasmid and its use for switchgrass transformation. Plant Cell Rep 20:48

    Article  CAS  Google Scholar 

  11. Song G, Walworth A, Hancock JF (2012) Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tiss Org Cult 108:445–453

    Article  CAS  Google Scholar 

  12. Li RY, Qu RD (2011) High throughput agrobacterium-mediated switchgrass transformation. Biomass Bioenergy 35(3):1046–1054. https://doi.org/10.1016/j.biombioe.2010.11.025

    Article  CAS  Google Scholar 

  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  14. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218. https://doi.org/10.1007/bf01977351

    Article  CAS  Google Scholar 

  15. Doyle JJDJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  16. Seo M, Takahara M, Takamizo T (2010) Optimization of culture conditions for plant regeneration of Panicum spp. through somatic embryogenesis. Grassl Sci 56(1):6–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiuXia Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Q., Song, GQ. (2019). Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass. In: Kumar, S., Barone, P., Smith, M. (eds) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8778-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8777-1

  • Online ISBN: 978-1-4939-8778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics