Skip to main content

Measuring Cardiomyocyte Contractility and Calcium Handling In Vitro

  • Protocol
  • First Online:
Experimental Models of Cardiovascular Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

In vitro measurements of cardiomyocyte contractility and Ca2+ handling have been used as a platform for determining physiological consequence of various genetic manipulations and identifying potential therapeutic targets for the treatment of heart failure. The Myocyte Calcium and Contractility System (IonOptix) offers a simultaneous trace of sarcomere movements and changes of intracellular Ca2+ levels in a single cardiomyocyte. Herein, we describe a modified protocol for the isolation of adult cardiomyocytes from murine hearts and provide a step-by-step description on how to analyze cardiomyocyte Ca2+ transient and contractility data collected using the IonOptix system. In our modified protocol, we recommend a novel cannulation technique which simplifies this difficult method and leads to improved viability of isolated cardiomyocytes. In addition, a comprehensive analysis of intracellular Ca2+ handling, SR Ca2+ load, myofilament Ca2+ sensitivity, and cardiomyocyte contractility is described in order to provide important insights into myocardial mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fearnley CJ, Roderick HL, Bootman MD (2011) Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol 3:a004242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kho C, Lee A, Hajjar RJ (2012) Altered sarcoplasmic reticulum calcium cycling: targets for heart failure therapy. Nat Rev Cardiol 12:717–733

    Article  CAS  Google Scholar 

  3. Ather S, Respress JL, Li N, Wehrens XH (2013) Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta 1832:2425–2431

    Article  CAS  PubMed  Google Scholar 

  4. Despa S, Bers DM (2013) Na(+) transport in the normal and failing heart: remember the balance. J Mol Cell Cardiol 61:2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Park WJ, Oh JG (2013) SERCA2a: a prime target for modulation of cardiac contractility during heart failure. BMB Rep 46:237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw RM, Colecraft HM (2013) L-type calcium channel targeting and local signalling in cardiac myocytes. Cardiovasc Res 98:177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chlopcikova S, Psotova J, Miketova P (2001) Neonatal rat cardiomyocytes: a model for the study of morphological, biochemical and electrophysiological characteristics of the heart. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 145:49–55

    Article  CAS  PubMed  Google Scholar 

  8. Haworth RA (1990) Use of isolated adult myocytes to evaluate cardiotoxicity. II. Preparation and properties. Toxicol Pathol 18:521–530

    PubMed  CAS  Google Scholar 

  9. Haworth RA, Goknur AB, Cook MG, Decker RS (1990) Use of isolated adult myocytes to evaluate cardiotoxicity. I. Sugar uptake and protein synthesis. Toxicol Pathol 18:511–520

    PubMed  CAS  Google Scholar 

  10. Lieu DK, Liu J, Siu CW, McNerney GP, Tse HF, Abu-Khalil A, Huser T, Li RA (2009) Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev 18:1493–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simko F, Turcani M, Fizel A, Fizel’ova A (1986) The isolated cardiomyocyte: a prospective model for the experimental study of the heart muscle. Cesk Fysiol 35:414–428

    PubMed  CAS  Google Scholar 

  12. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283:H1398–H1408

    Article  CAS  PubMed  Google Scholar 

  13. Yi T, Vick JS, Vecchio MJ, Begin KJ, Bell SP, Delay RJ, Palmer BM (2013) Identifying cellular mechanisms of zinc-induced relaxation in isolated cardiomyocytes. Am J Physiol Heart Circ Physiol 305:H706–H715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oh JG, Kim J, Jang SP, Nguen M, Yang DK, Jeong D, Park ZY, Park SG, Hajjar RJ, Park WJ (2012) Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J Mol Cell Cardiol 56:63–71

    Article  CAS  PubMed  Google Scholar 

  15. Wei H, Jin JP (2014) A dominantly negative mutation in cardiac troponin I at the interface with troponin T causes early remodeling in ventricular cardiomyocytes. Am J Physiol Cell Physiol 307:C338–C348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu ZB, Wei H, Jin JP (2012) Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling. Am J Physiol Cell Physiol 303:C24–C32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunst G, Kress KR, Gruen M, Uttenweiler D, Gautel M, Fink RH (2000) Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2. Circ Res 86:51–58

    Article  CAS  PubMed  Google Scholar 

  18. Oh JG, Jeong D, Cha H, Kim JM, Lifirsu E, Kim J, Yang DK, Park CS, Kho C, Park S et al (2012) PICOT increases cardiac contractility by inhibiting PKCzeta activity. J Mol Cell Cardiol 53:53–63

    Article  CAS  PubMed  Google Scholar 

  19. Varian KD, Raman S, Janssen PM (2006) Measurement of myofilament calcium sensitivity at physiological temperature in intact cardiac trabeculae. Am J Physiol Heart Circ Physiol 290:H2092–H2097

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PAG is supported by a fellowship from the Canadian Institutes of Health Research. JGO is supported by a fellowship from the American Heart Association (17POST33410877).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Gyun Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gorski, P.A., Kho, C., Oh, J.G. (2018). Measuring Cardiomyocyte Contractility and Calcium Handling In Vitro. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics