Skip to main content

Measuring Mitochondrial Calcium Fluxes in Cardiomyocytes upon Mechanical Stretch-Induced Hypertrophy

  • Protocol
  • First Online:
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2475))

  • 1437 Accesses

Abstract

Calcium Ca2+ regulation is a key component of numerous cellular functions. In cardiomyocytes, Ca2+ regulates excitation-contraction coupling and influences signaling cascades involved in cell metabolism and cell survival. Prolonged dysregulation of mitochondrial Ca2+ leads to dysfunctional cardiomyocytes, apoptosis and ultimately heart failure. VEGF promotes cardiomyocyte contractility by increasing calcium transients to control the strength of the heartbeat. Here, we describe a method to measure mitochondrial Ca2+ fluxes in human ventricular cardiomocytes after inducing stretch-mediated hypertrophy in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walsh C, Barrow S, Voronina S et al (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta Bioenerg 1787:1374–1382. https://doi.org/10.1016/j.bbabio.2009.01.007

    Article  CAS  Google Scholar 

  2. Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668–1675. https://doi.org/10.1111/j.1600-0854.2007.00644.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balaban RS, Bose S, French SA et al (2003) Role of calcium in metabolic signaling between cardiac sarcoplasmic reticulum and mitochondria in vitro. Am J Physiol Cell Physiol 284:C285–C293. https://doi.org/10.1152/ajpcell.00129.2002

    Article  CAS  PubMed  Google Scholar 

  4. Ramaccini D, Montoya-Uribe V, Aan F et al (2021) Mitochondrial function and dysfunction in cardiomyopathy. Front Cell Dev Biol 8:624216 https://doi.org/10.3389/fcell.2020.624216

  5. Sadoshima J, Izumo S (1993) Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. J Recept Res 13(1–4):777–794. https://doi.org/10.3109/107998993090736

    Article  CAS  PubMed  Google Scholar 

  6. Leychenko A, Konorev E, Jijiwa M et al (2011) Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes. PLoS One 6(12):e29055. https://doi.org/10.1371/journal.pone.0029055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matter ML (2015) Induction of VEGF secretion in cardiomyoctes by mechanical stretch. Methods Mol Biol 1332:67–74. https://doi.org/10.1007/978-1-4939-2917-7_5

    Article  PubMed  Google Scholar 

  8. Rottbauer W, Just S, Wessels G et al (2005) VEGF–PLCγ1 pathway controls cardiac contractility in the embryonic heart. Genes Dev 19:1624–1634. https://doi.org/10.1101/gad.1319405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HK, Kang YG, Jeong SH et al (2018) Cyclic stretch increases mitochondrial biogenesis in a cardiac cell line. Biochem Biophys Res Commun 505(3):768–774. https://doi.org/10.1016/j.bbrc.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  10. Bonora M, Giorgi C, Bononi A et al (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8:2015–2118. https://doi.org/10.1038/nprot.2013.127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.L. Matter is supported by a grant from the National Institutes of Health (R01HD091162). C. Giorgi is supported by the Italian Association for Cancer Research (IG-19803) and the Progetti di Rilevante Interesse Nazionale (PRIN20177E9EPY). C. Giorgi is grateful for local funds from University of Ferrara and A-ROSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Matter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramaccini, D., Giorgi, C., Matter, M.L. (2022). Measuring Mitochondrial Calcium Fluxes in Cardiomyocytes upon Mechanical Stretch-Induced Hypertrophy. In: Fiedler, L.R., Pellet-Many, C. (eds) VEGF Signaling. Methods in Molecular Biology, vol 2475. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2217-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2217-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2216-2

  • Online ISBN: 978-1-0716-2217-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics