Skip to main content

Rodent Model of Primary Blast-Induced Traumatic Brain Injury: Guidelines to Blast Methodology

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

Abstract

Neuropsychological symptoms in warfighters after exposures to blast have triggered considerable research interest in the pathophysiological manifestations of blast-induced traumatic brain injury (bTBI). Preclinical research models of blast are attractive tools to understand the prognosis of behavioral changes, identify relevant biomarkers and characterize the neurobiological underpinnings of blast injury. However, the lack of standardization among preclinical bTBI studies has led to numerous inconsistencies in the data. Inadequate characterization of blast simulators, incomplete understanding and interpretation of blast physics, improper use of animal restraining techniques, and misapplication of biomechanical loading conditions in animal research have led to laboratory results that all-too-often bear little resemblance and relevance to injuries sustained by warfighters. Another major challenge for the bTBI research community is inadequate reporting of methodological conditions such as total pressure, static pressure, positive pressure duration, negative pressure duration, and impulse, to name a few, which has also contributed to ambiguous and sometimes conflicting research outcomes. This report focuses on the requirements for standardization of rodent experimental blast exposure conditions, blast simulator characterization, and guidelines on the dissemination of blast injury research methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams RW (1951) Small caliber missile blast wounds of the hand; mechanism and early management. Am J Surg 82:219–226

    Article  PubMed  CAS  Google Scholar 

  2. Beal SL, Blaisdell FW (1989) Traumatic hemipelvectomy: a catastrophic injury. J Trauma 29:1346–1351

    Article  PubMed  CAS  Google Scholar 

  3. Connolly M, Ibrahim ZR, Johnson ON 3rd (2016) Changing paradigms in lower extremity reconstruction in war-related injuries. Mil Med Res 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morrissey EJ (1944) Head and blast injuries. Cal West Med 61:196–199

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Chapman JC, Diaz-Arrastia R (2014) Military traumatic brain injury: a review. Alzheimers Dement 10:S97–S104

    Article  PubMed  Google Scholar 

  6. DoD Worldwide Numbers for TBI (2017) DVBIC statistics

    Google Scholar 

  7. Bhattacharjee Y (2008) Shell shock revisited: solving the puzzle of blast trauma. Science 319:406–408

    Article  PubMed  CAS  Google Scholar 

  8. Hoge CW et al (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. JAMA 358:453–463

    CAS  Google Scholar 

  9. Center for Disease Control (2013) Explosions and blast injuries: a primer for clinicians

    Google Scholar 

  10. Carr W et al (2016) Repeated low-level blast exposure: a descriptive human subjects study. Mil Med 181:28S–39S

    Article  Google Scholar 

  11. Dal Cengio Leonardi A et al (2012) Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat. J Biomech 45:2595–2602

    Article  PubMed  Google Scholar 

  12. Moss WC, King MJ, Blackman EG (2009) Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys Rev Lett 103:108702

    Article  PubMed  CAS  Google Scholar 

  13. Sajja VS et al (2018) Neurolipids and microRNA changes in blood following blast traumatic brain injury in mice: an exploratory study. J Neurotrauma 35:353–361

    Article  PubMed  Google Scholar 

  14. Ellenbroek B, Youn J (2016) Rodent models in neuroscience research: is it a rat race? Dis Model Mech 9:1079–1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. McGraw CM, Ward CS, Samaco RC (2017) Genetic rodent models of brain disorders: perspectives on experimental approaches and therapeutic strategies. Am J Med Genet C Semin Med Genet 175:368–379

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dewey JM (2016) Measurement of the physical properties of blast waves in experimental methods of shock wave research. Springer International Publishing, Switzerland, pp 53–85

    Book  Google Scholar 

  17. Needham CE et al (2015) Blast testing issues and TBI: experimental models that lead to wrong conclusions. Front Neurol 6:72

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kaur C et al (1995) The response of neurons and microglia to blast injury in the rat brain. Neuropathol Appl Neurobiol 21:369–377

    Article  PubMed  CAS  Google Scholar 

  19. Woods AS et al (2013) Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci 4:594–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Säljö A et al (2000) Blast exposure causes redistribution of phosphorylated neurofilament subunits in neurons of the adult rat brain. J Neurotrauma 17:719–726

    Article  PubMed  Google Scholar 

  21. Igra O (2016) Shock tubes in experimental methods of shock wave research. Springer International Publishing, Switzerland, pp 3–52

    Google Scholar 

  22. Fearnley GR (1945) Blast injury to the lungs. Br Med J 1:474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Henry GA (1945) Blast injuries of the ear. Laryngoscope 55:663–672

    Article  PubMed  CAS  Google Scholar 

  24. Elsayed NM (1997) Toxicology of blast overpressure. Toxicology 121:1–15

    Article  PubMed  CAS  Google Scholar 

  25. Cernak I et al (2001) Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma 50:695–706

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez O et al (2016) Manganese-enhanced magnetic resonance imaging as a diagnostic and dispositional tool after mild-moderate blast traumatic brain injury. J Neurotrauma 33:662–671

    Article  PubMed  PubMed Central  Google Scholar 

  27. Haghighi F et al (2015) Neuronal DNA methylation profiling of blast-related traumatic brain injury. J Neurotrauma 32:1200–1209

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bricker-Anthony C, Rex TS (2015) Neurodegeneration and vision loss after mild blunt trauma in the C57Bl/6 and DBA/2J mouse. PLoS One 10:e0131921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kabu S et al (2015) Blast-associated shock waves result in increased brain vascular leakage and elevated ROS levels in a rat model of traumatic brain injury. PLoS One 10:e0127971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Toklu HZ et al (2015) The functional and structural changes in the basilar artery due to overpressure blast injury. J Cereb Blood Flow Metab 35:1950–1956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Miyazaki H et al (2015) Thoracic shock wave injury causes behavioral abnormalities in mice. Acta Neurochir 157:2111–21120

    Article  PubMed  Google Scholar 

  32. Ritzel DV et al (2018) Acceleration from short duration blast. Shock Waves 28:101–114

    Article  Google Scholar 

  33. Alphonse VD et al (2014) Membrane characteristics for biological blast overpressure testing using blast simulators. Biomed Sci Instrum 50:248–253

    PubMed  Google Scholar 

  34. Sawyer TW et al (2016) High-fidelity simulation of primary blast: direct effects on the head. J Neurotrauma 33:1181–1193

    Article  PubMed  Google Scholar 

  35. Skotak M et al ((2013)) Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures. J Neurotrauma 3:1147–1160

    Article  Google Scholar 

  36. Chavko M et al (2011) Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods 195:61–66

    Article  PubMed  Google Scholar 

  37. Meabon JS et al (2016) Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med 8:321ra6

    Article  CAS  PubMed  Google Scholar 

  38. McKee AC, Robinson ME (2014) Military-related traumatic brain injury and neurodegeneration. Alzheimers Dement 10:S242–S253

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arun P et al (2015) Acute decrease in alkaline phosphatase after brain injury: a potential mechanism for tauopathy. Neurosci Lett 609:152–158

    Article  PubMed  CAS  Google Scholar 

  40. Sajja VS et al (2015) Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injury. Sci Rep 5:15075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shively SB et al (2016) Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol 15:944–953

    Article  PubMed  Google Scholar 

  42. Hayes JP et al (2015) The nature of white matter abnormalities in blast-related mild traumatic brain injury. Neuroimage Clin 8:148–156

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sorg SF et al (2014) White matter integrity in veterans with mild traumatic brain injury: associations with executive function and loss of consciousness. J Head Trauma Rehabil 29:21–32

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hubbard WB et al (2017) Distinguishing the unique Neuropathological profile of blast polytrauma. Oxidative Med Cell Longev 2017:5175249

    Article  CAS  Google Scholar 

  45. Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51:966–979

    Article  PubMed  CAS  Google Scholar 

  46. VS Sajja, et al., (2017) Pulmonary injuries and systemic disruptions in rats in response to repeated daily exposures to blast overpressure. Military Health System Research Symposium (MHSRS). Kissimmee FL, 27–30 Aug

    Google Scholar 

  47. Chandra N, Sundaramurthy A, Gupta RK (2017) Validation of laboratory animal and surrogate human models in primary blast injury studies. Mil Med 182:S105–S113

    Article  Google Scholar 

Download references

Disclaimer

The contents, opinions, and assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatasivasai Sujith Sajja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sajja, V.S., Arun, P., Van Albert, S.A., Long, J.B. (2018). Rodent Model of Primary Blast-Induced Traumatic Brain Injury: Guidelines to Blast Methodology. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics