Skip to main content

Perinatal Psychoneuroimmunology: Protocols for the Study of Prenatal Stress and Its Effects on Fetal and Postnatal Brain Development

  • Protocol
  • First Online:
Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1781))

Abstract

Prenatal stress (PS) impacts early behavioral, neuroimmune, and cognitive development. Pregnant rat models have been very valuable in examining the mechanisms of such fetal programming. A newer pregnant sheep model of maternal stress offers the unique advantages of chronic in utero monitoring and manipulation. This chapter presents the techniques used to model single and multigenerational stress exposures and their pleiotropic effects on the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, Hoyer D, Roseboom T, Raikkonen K, King S, Schwab M (2017) Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci Biobehav Rev

    Google Scholar 

  2. Abbasi J (2017) The paternal epigenome makes its mark. JAMA 317:2049–2051

    Article  PubMed  Google Scholar 

  3. Mychasiuk R, Harker A, Ilnytskyy S, Gibb R (2013) Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 241:100–105

    Article  CAS  PubMed  Google Scholar 

  4. Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diz-Chaves Y, Astiz M, Bellini MJ, Garcia-Segura LM (2013) Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice. Brain Behav Immun 28:196–206

    Article  CAS  PubMed  Google Scholar 

  6. Slusarczyk J, Trojan E, Glombik K, Budziszewska B, Kubera M, Lason W, Popiolek-Barczyk K, Mika J, Wedzony K, Basta-Kaim A (2015) Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci 9:82

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boersma GJ, Tamashiro KL (2015) Individual differences in the effects of prenatal stress exposure in rodents. Neurobiol Stress 1:100–108

    Article  PubMed  Google Scholar 

  8. Weinstock M (2017) Prenatal stressors in rodents: effects on behavior. Neurobiol Stress 6:3–13

    Article  PubMed  Google Scholar 

  9. Babenko O, Kovalchuk I, Metz GA (2015) Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 48:70–91

    Article  PubMed  Google Scholar 

  10. Rakers F, Frauendorf V, Rupprecht S, Schiffner R, Bischoff SJ, Kiehntopf M, Reinhold P, Witte OW, Schubert H, Schwab M (2013) Effects of early- and late-gestational maternal stress and synthetic glucocorticoid on development of the fetal hypothalamus-pituitary-adrenal axis in sheep. Stress 16:122–129

    Article  CAS  PubMed  Google Scholar 

  11. Burns P, Liu HL, Kuthiala S, Fecteau G, Desrochers A, Durosier LD, Cao M, Frasch MG (2015) Instrumentation of near-term fetal sheep for multivariate chronic non-anesthetized recordings. J Vis Exp 105:e52581

    Google Scholar 

  12. Rakers F, Rupprecht S, Dreiling M, Bergmeier C, Witte OW, Schwab M (2017) Transfer of maternal psychosocial stress to the fetus. Neurosci Biobehav Rev

    Google Scholar 

  13. Braun K, Bock J, Wainstock T, Matas E, Gaisler-Salomon I, Fegert J, Ziegenhain U, Segal M (2017) Experience-induced transgenerational (re-)programming of neuronal structure and functions: impact of stress prior and during pregnancy. Neurosci Biobehav Rev

    Google Scholar 

  14. Barker DJ (1998) In utero programming of chronic disease. Clin Sci (Lond) 95:115–128

    Article  CAS  Google Scholar 

  15. Gluckman PD, Hanson MA, Spencer HG (2005) Predictive adaptive responses and human evolution. Trends Ecol Evol 20:527–533

    Article  PubMed  Google Scholar 

  16. Gluckman PD, Hanson MA (2006) The developmental origins of health and disease. Early Life Origins Health Dis:1–7

    Google Scholar 

  17. Van den Bergh BR (2011) Developmental programming of early brain and behaviour development and mental health: a conceptual framework. Dev Med Child Neurol 53(Suppl 4):19–23

    Article  PubMed  Google Scholar 

  18. Lahiri DK, Maloney B, Zawia NH (2009) The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry 14:992–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hertzman C (1999) The biological embedding of early experience and its effects on health in adulthood. Ann N Y Acad Sci 896:85–95

    Article  CAS  PubMed  Google Scholar 

  20. Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK (2012) Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci U S A 109:9143–9148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Porter TF, Fraser AM, Hunter CY, Ward RH, Varner MW (1997) The risk of preterm birth across generations. Obstet Gynecol 90:63–67

    Article  CAS  PubMed  Google Scholar 

  22. Yao Y, Robinson AM, Zucchi FC, Robbins JC, Babenko O, Kovalchuk O, Kovalchuk I, Olson DM, Metz GA (2014) Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med 12:121

    Article  PubMed  PubMed Central  Google Scholar 

  23. Christiaens I (2012) Chronic maternal stress and genetic variants in the etiology of spontaneous preterm birth. Department of Physiology, University of Alberta, Edmonton, AB

    Google Scholar 

  24. Christiaens I, Hegadoren K, Olson DM (2012) Adverse childhood experiences are associated with spontaneous preterm birth: a case-control study. Reprod Sci 19:183A

    Google Scholar 

  25. Shapiro GD, Fraser WD, Frasch MG, Seguin JR (2013) Psychosocial stress in pregnancy and preterm birth: associations and mechanisms. J Perinat Med 41:631–645

    Article  PubMed  PubMed Central  Google Scholar 

  26. Christian LM (2015) Stress and immune function during pregnancy: an emerging focus in mind-body medicine. Curr Dir Psychol Sci 24:3–9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Raju TNK, Buist AS, Blaisdell CJ, Moxey-Mims M, Saigal S (2017) Adults born preterm: a review of general health and system-specific outcomes. Acta Paediatr 106:1409–1437

    Article  PubMed  Google Scholar 

  28. Adrover E, Berger MA, Perez AA, Tarazi FI, Antonelli MC (2007) Effects of prenatal stress on dopamine D2 receptor asymmetry in rat brain. Synapse 61:459–462

    Article  CAS  PubMed  Google Scholar 

  29. Berger MA, Barros VG, Sarchi MI, Tarazi FI, Antonelli MC (2002) Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochem Res 27:1525–1533

    Article  CAS  PubMed  Google Scholar 

  30. Barros VG, Berger MA, Martijena ID, Sarchi MI, Perez AA, Molina VA, Tarazi FI, Antonelli MC (2004) Early adoption modifies the effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. J Neurosci Res 76:488–496

    Article  CAS  PubMed  Google Scholar 

  31. Katunar MR, Saez T, Brusco A, Antonelli MC (2010) Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotox Res 18:69–81

    Article  PubMed  Google Scholar 

  32. Carboni E, Barros VG, Ibba M, Silvagni A, Mura C, Antonelli MC (2010) Prenatal restraint stress: an in vivo microdialysis study on catecholamine release in the rat prefrontal cortex. Neuroscience 168:156–166

    Article  CAS  PubMed  Google Scholar 

  33. Silvagni A, Barros VG, Mura C, Antonelli MC, Carboni E (2008) Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell: an ‘in vivo’ microdialysis study in adolescent and young adult rats. Eur J Neurosci 28:744–758

    Article  PubMed  Google Scholar 

  34. Pallares ME, Baier CJ, Adrover E, Monteleone MC, Brocco MA, Antonelli MC (2013) Age-dependent effects of prenatal stress on the corticolimbic dopaminergic system development in the rat male offspring. Neurochem Res 38:2323–2335

    Article  CAS  PubMed  Google Scholar 

  35. Pallares ME, Adrover E, Baier CJ, Bourguignon NS, Monteleone MC, Brocco MA, Gonzalez-Calvar SI, Antonelli MC (2013) Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress 16:429–440

    Article  CAS  PubMed  Google Scholar 

  36. Barros VG, Duhalde-Vega M, Caltana L, Brusco A, Antonelli MC (2006) Astrocyte-neuron vulnerability to prenatal stress in the adult rat brain. J Neurosci Res 83:787–800

    Article  CAS  PubMed  Google Scholar 

  37. Adrover E, Pallarés ME, Baier CJ, Monteleone MC, Giuliani FA, Waagepetersen HS, Brocco MA, Cabrera R, Sonnewald U, Schousboe A (2015) Glutamate neurotransmission is affected in prenatally stressed offspring. Neurochem Int 88:73–87

    Article  CAS  PubMed  Google Scholar 

  38. Monteleone MC, Adrover E, Pallares ME, Antonelli MC, Frasch AC, Brocco MA (2014) Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics 9:152–160

    Article  CAS  PubMed  Google Scholar 

  39. Baier CJ, Pallares ME, Adrover E, Katunar MR, Raisman-Vozari R, Antonelli MC (2014) Intrastriatal 6-OHDA lesion differentially affects dopaminergic neurons in the ventral tegmental area of prenatally stressed rats. Neurotox Res 26:274–284

    Article  CAS  PubMed  Google Scholar 

  40. Baier CJ, Katunar MR, Adrover E, Pallares ME, Antonelli MC (2012) Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res 22:16–32

    Article  CAS  PubMed  Google Scholar 

  41. Debeir T, Ginestet L, Francois C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, Raisman-Vozari R (2005) Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp Neurol 193:444–454

    Article  CAS  PubMed  Google Scholar 

  42. Rakers F, Bischoff S, Schiffner R, Haase M, Rupprecht S, Kiehntopf M, Kuhn-Velten WN, Schubert H, Witte OW, Nijland MJ, Nathanielsz PW, Schwab M (2015) Role of catecholamines in maternal-fetal stress transfer in sheep. Am J Obstet Gynecol 213(684):e681–e689

    Google Scholar 

  43. Dreiling M, Bischoff S, Schiffner R, Rupprecht S, Kiehntopf M, Schubert H, Witte OW, Nathanielsz PW, Schwab M, Rakers F (2016) Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors. Stress 19:547–551

    Article  CAS  PubMed  Google Scholar 

  44. Durosier LD, Green G, Batkin I, Seely AJ, Ross MG, Richardson BS, Frasch MG (2014) Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Front Pediatr 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li X, Xu Y, Herry C, Durosier LD, Casati D, Stampalija T, Maisonneuve E, Seely AJ, Audibert F, Alfirevic Z, Ferrazzi E, Wang X, Frasch MG (2015) Sampling frequency of fetal heart rate impacts the ability to predict pH and BE at birth: a retrospective multi-cohort study. Physiol Meas 36:L1–L12

    Article  PubMed  Google Scholar 

  46. Vezina-Audette R, Herry C, Burns P, Frasch M, Chave E, Theoret C (2016) Heart rate variability in relation to stress in the Asian elephant (Elephas maximus). Can Vet J 57:289–292

    PubMed  PubMed Central  Google Scholar 

  47. Dawes GS, Serra-Serra V, Moulden M, Redman CW (1994) Dexamethasone and fetal heart rate variation. Br J Obstet Gynaecol 101:675–679

    Article  CAS  PubMed  Google Scholar 

  48. Mulder EJ, Derks JB, Visser GH (1997) Antenatal corticosteroid therapy and fetal behaviour: a randomised study of the effects of betamethasone and dexamethasone. Br J Obstet Gynaecol 104:1239–1247

    Article  CAS  PubMed  Google Scholar 

  49. Senat MV, Minoui S, Multon O, Fernandez H, Frydman R, Ville Y (1998) Effect of dexamethasone and betamethasone on fetal heart rate variability in preterm labour: a randomised study. Br J Obstet Gynaecol 105:749–755

    Article  CAS  PubMed  Google Scholar 

  50. Derks JB, Mulder EJ, Visser GH (1995) The effects of maternal betamethasone administration on the fetus. Br J Obstet Gynaecol 102:40–46

    Article  CAS  PubMed  Google Scholar 

  51. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA (2015) Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 10:408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frasch MG, Muller T, Wicher C, Weiss C, Lohle M, Schwab K, Schubert H, Nathanielsz PW, Witte OW, Schwab M (2007) Fetal body weight and the development of the control of the cardiovascular system in fetal sheep. J Physiol 579:893–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frasch MG, Muller T, Weiss C, Schwab K, Schubert H, Schwab M (2009) Heart rate variability analysis allows early asphyxia detection in ovine fetus. Reprod Sci 16:509–517

    Article  PubMed  Google Scholar 

  54. Durosier LD, Xu A, Matushewski B, Cao M, Herry C, Batkin I, Seely A, Ross M, Richardson BS, Frasch MG (2013) Neural signature of cerebral activity of the fetal cholinergic anti-inflammatory pathway derived from heart rate variability. FASEB J 27(1 Supplement):926–911

    Google Scholar 

  55. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    Article  CAS  PubMed  Google Scholar 

  56. Durosier LD, Herry CL, Cortes M, Cao M, Burns P, Desrochers A, Fecteau G, Seely AJ, Frasch MG (2015) Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis? Physiol Meas 36:2089–2102

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lun Liu H, Garzoni L, Herry C, Durosier LD, Cao M, Burns P, Fecteau G, Desrochers A, Patey N, Seely AJ, Faure C, Frasch MG (2016) Can monitoring fetal intestinal inflammation using heart rate variability analysis signal incipient necrotizing enterocolitis of the neonate? Pediatr Crit Care Med 17(4):e165–e176

    Article  Google Scholar 

  58. Pavlov VA, Tracey KJ (2012) The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol 8:743–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pavlov VA, Tracey KJ (2015) Neural circuitry and immunity. Immunol Res 63:38–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pavlov VA, Tracey KJ (2017) Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20:156–166

    Article  CAS  PubMed  Google Scholar 

  61. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  62. Kwan H, Garzoni L, Liu HL, Cao M, Desrochers A, Fecteau G, Burns P, Frasch MG (2016) VNS in inflammation: systematic review of animal models and clinical studies. Bioelectron Med 3:1–6

    PubMed  Google Scholar 

  63. Caliskan G, Albrecht A (2013) Noradrenergic interactions via autonomic nervous system: a promising target for extinction-based exposure therapy? J Neurophysiol 110:2507–2510

    Article  PubMed  Google Scholar 

  64. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J (2014) Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul 7:871–877

    Article  PubMed  Google Scholar 

  65. George MS, Ward HE Jr, Ninan PT, Pollack M, Nahas Z, Anderson B, Kose S, Howland RH, Goodman WK, Ballenger JC (2008) A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul 1:112–121

    Article  CAS  PubMed  Google Scholar 

  66. Liu RP, Fang JL, Rong PJ, Zhao Y, Meng H, Ben H, Li L, Huang ZX, Li X, Ma YG, Zhu B (2013) Effects of electroacupuncture at auricular concha region on the depressive status of unpredictable chronic mild stress rat models. Evid Based Complement Alternat Med 2013:789674

    PubMed  PubMed Central  Google Scholar 

  67. O'Keane V, Dinan TG, Scott L, Corcoran C (2005) Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression. Biol Psychiatry 58:963–968

    Article  CAS  PubMed  Google Scholar 

  68. Pena DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S (2014) Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front Behav Neurosci 8:327

    PubMed  PubMed Central  Google Scholar 

  69. Ylikoski J, Lehtimaki J, Pirvola U, Makitie A, Aarnisalo A, Hyvarinen P, Ylikoski M (2017) Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Otolaryngol 137(4):426–431

    Article  PubMed  Google Scholar 

  70. Hosoi T, Okuma Y, Nomura Y (2000) Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol 279:R141–R147

    Article  CAS  PubMed  Google Scholar 

  71. Farrokhi CB, Tovote P, Blanchard RJ, Blanchard DC, Litvin Y, Spiess J (2007) Cortagine: behavioral and autonomic function of the selective CRF receptor subtype 1 agonist. CNS Drug Rev 13:423–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Porges SW (1995) Cardiac vagal tone: a physiological index of stress. Neurosci Biobehav Rev 19:225–233

    Article  CAS  PubMed  Google Scholar 

  73. Porges SW (2009) The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med 76(Suppl 2):S86–S90

    Article  PubMed  PubMed Central  Google Scholar 

  74. Porges SW, Furman SA (2011) The early development of the autonomic nervous system provides a neural platform for social behavior: a polyvagal perspective. Infant Child Dev 20:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  75. Porges SW (2007) The polyvagal perspective. Biol Psychol 74:116–143

    Article  PubMed  Google Scholar 

  76. Seely AJ, Macklem PT (2004) Complex systems and the technology of variability analysis. Crit Care 8:R367–R384

    Article  PubMed  PubMed Central  Google Scholar 

  77. Taylor AG, Goehler LE, Galper DI, Innes KE, Bourguignon C (2010) Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore (NY) 6:29–41

    Article  Google Scholar 

  78. Frasch MG, Muller T, Hoyer D, Weiss C, Schubert H, Schwab M (2009) Nonlinear properties of vagal and sympathetic modulations of heart rate variability in ovine fetus near term. Am J Physiol Regul Integr Comp Physiol 296:R702–R707

    Article  CAS  PubMed  Google Scholar 

  79. Migicovsky Z, Kovalchuk I (2011) Epigenetic memory in mammals. Front Genet 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zucchi FC, Yao Y, Metz GA (2012) The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 3:96

    Article  PubMed  PubMed Central  Google Scholar 

  81. Renthal NE, Chen CC, Williams KC, Gerard RD, Prange-Kiel J, Mendelson CR (2010) miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc Natl Acad Sci U S A 107:20828–20833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N (2011) Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci 18:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Faraji J, Soltanpour N, Lotfi H, Moeeini R, Moharreri AR, Roudaki S, Hosseini SA, Olson DM, Abdollahi AA, Soltanpour N, Mohajerani MH, Metz GAS (2017) Lack of social support raises stress vulnerability in rats with a history of ancestral stress. Sci Rep 7:5277

    Article  PubMed  PubMed Central  Google Scholar 

  84. Faraji J, Soltanpour N, Ambeskovic M, Zucchi FCR, Beaumier P, Kovalchuk I, Metz GAS (2017) Evidence for ancestral programming of resilience in a two-hit stress model. Front Behav Neurosci 11:89

    Article  PubMed  PubMed Central  Google Scholar 

  85. Olson DM, Severson EM, Verstraeten BS, Ng JW, McCreary JK, Metz GA (2015) Allostatic load and preterm birth. Int J Mol Sci 16:29856–29874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Daskalakis NP, Bagot RC, Parker KJ, Vinkers CH, de Kloet ER (2013) The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 38:1858–1873

    Article  PubMed  PubMed Central  Google Scholar 

  87. Saban KL, Mathews HL, DeVon HA, Janusek LW (2014) Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis 5:346–355

    PubMed  PubMed Central  Google Scholar 

  88. Zucchi FC, Yao Y, Ilnytskyy Y, Robbins JC, Soltanpour N, Kovalchuk I, Kovalchuk O, Metz GA (2014) Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation. PLoS One 9:e92130

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li Y, Saldanha SN, Tollefsbol TO (2014) Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPS J 16:27–36

    Article  PubMed  Google Scholar 

  90. Gapp K, Bohacek J, Grossmann J, Brunner AM, Manuella F, Nanni P, Mansuy IM (2016) Potential of environmental enrichment to prevent transgenerational effects of paternal trauma. Neuropsychopharmacology 41:2749–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McCreary JK, Erickson ZT, Metz GA (2016) Environmental enrichment mitigates the impact of ancestral stress on motor skill and corticospinal tract plasticity. Neurosci Lett 632:181–186

    Article  CAS  PubMed  Google Scholar 

  92. McCreary JK, Erickson ZT, Hao Y, Ilnytskyy Y, Kovalchuk I, Metz GA (2016) Environmental intervention as a therapy for adverse programming by ancestral stress. Sci Rep 6:37814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A 112:13699–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hebb DO (1947) The effect of early experience on problem solving at maturity. Am Psychol 2:737–745

    Google Scholar 

  95. Diamond MC, Johnson RE, Protti AM, Ott C, Kajisa L (1985) Plasticity in the 904-day-old male rat cerebral cortex. Exp Neurol 87:309–317

    Article  CAS  PubMed  Google Scholar 

  96. Faraji J, Soltanpour N, Lotfi H, Nejad-Ghorban F, Moharrerie A, Roudaki S, Hosseini SA, Abdollahi AA, Soltanpour N, Moeeini R, Metz GA S (Submitted) Social experience promotes brain health and stress resiliency in mothers and their unexposed offspring

    Google Scholar 

  97. Skinner MK (2008) What is an epigenetic transgenerational phenotype?: F3 or F2. Reprod Toxicol 25:2–6

    Article  CAS  PubMed  Google Scholar 

  98. Ambeskovic M, Soltanpour N, Falkenberg EA, Zucchi FCR, Kolb B, Metz GAS (2017) Ancestral exposure to stress generates new behavioral traits and a functional hemispheric dominance shift. Cereb Cortex 27:2126–2138

    PubMed  Google Scholar 

  99. Whishaw IQ, Kolb B (2004) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, New York

    Book  Google Scholar 

  100. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Frasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Frasch, M.G., Baier, C.J., Antonelli, M.C., Metz, G.A.S. (2018). Perinatal Psychoneuroimmunology: Protocols for the Study of Prenatal Stress and Its Effects on Fetal and Postnatal Brain Development. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 1781. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7828-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7828-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7827-4

  • Online ISBN: 978-1-4939-7828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics