Skip to main content

Qualitative and Quantitative NMR Approaches in Blood Serum Lipidomics

  • Protocol
  • First Online:
Investigations of Early Nutrition Effects on Long-Term Health

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

Nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics can be applied in the analysis of complex biological samples in many ways. For example, we can analyze lipids, elucidate their structures, determine their nutritional values, and determine their distribution in blood serum. As lipids are not soluble in water, they are transported in blood as lipid-rich self-assembled particles, divided into different density assemblies from high- to very-low-density lipoproteins (HDL to VLDL), or by combining with serum proteins, such as albumins (human serum albumins (HSA)). Therefore, serum lipids can be analyzed as they are using only a 1:1 (v/v) dilution with a buffer or deuterated water prior to analysis by applying 1H NMR or 1H NMR edited-by-diffusion techniques. Alternatively, lipids can be extracted from the serum using liquid partition equilibrium and then analyzed using liquid-state NMR techniques. Our chapter describes protocols that are used for extraction of blood serum lipids and their quantitative 1H NMR (1H qNMR) analysis in lipid extracts as well as 1H NMR edited by diffusion for direct blood serum lipid analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111

    Article  CAS  PubMed  Google Scholar 

  2. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  3. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L (2009) From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: analytical lipidomics. TrAC Trends Anal Chem 28:393–403

    Article  CAS  Google Scholar 

  4. Rai S, Bhatnagar S (2017) Novel lipidomic biomarkers in hyperlipidemia and cardiovascular diseases: an integrative biology analysis. OMICS 21:132–142

    Article  CAS  PubMed  Google Scholar 

  5. Vaz FM, Pras-Raves M, Bootsma AH, van Kampen AHC (2015) Principles and practice of lipidomics. J Inherit Metab Dis 38:41–52

    Article  CAS  PubMed  Google Scholar 

  6. Gurr MI, Harwood JL, Frayn KN (2002) Lipid biochemistry: an introduction, 5th edn. Blackwell, Oxford

    Book  Google Scholar 

  7. Stâhlman M, Borén J, Ekroos K (2012) High-throughput molecular lipidomics. In: Lipidomics. Wiley-VCH, Weinheim

    Google Scholar 

  8. Gurr MI (1999) Lipids in nutrition and health: a reappraisal, 1st edn. Woodhead, Cambridge

    Book  Google Scholar 

  9. Chaung H-C, Chang C-D, Chen P-H, Chang CJ, Liu SH, Chen CC (2013) Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain. Food Chem 138:342–347

    Article  CAS  PubMed  Google Scholar 

  10. Hyötyläinen T, Bondia-Pons I, Orešič M (2013) Lipidomics in nutrition and food research. Mol Nutr Food Res 57:1306–1318

    Article  PubMed  Google Scholar 

  11. Kaur N, Chugh V, Gupta AK (2014) Essential fatty acids as functional components of foods – a review. J Food Sci Technol 51:2289–2303

    Article  CAS  PubMed  Google Scholar 

  12. World Health Organization (2015) Healthy diet. World Health Organization, Geneva

    Google Scholar 

  13. Hu C, van der Heijden R, Wang M, van der Greef J, Hankemeier T, Xu G (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr B 877:2836–2846

    Article  CAS  Google Scholar 

  14. Stark RE, Gaede HC (2001) NMR of a phospholipid: modules for advanced laboratory courses. J Chem Educ 78:1248

    Article  Google Scholar 

  15. Kaffarnik S, Ehlers I, Gröbner G, Schleucher J, Vetter W (2013) Two-dimensional 31 P, 1 H NMR spectroscopic profiling of phospholipids in cheese and fish. J Agric Food Chem 61:7061–7069

    Article  CAS  PubMed  Google Scholar 

  16. Yu Y, Vidalino L, Anesi A, Macchi P, Guella G (2014) A lipidomics investigation of the induced hypoxia stress on HeLa cells by using MS and NMR techniques. Mol BioSyst 10:878

    Article  CAS  PubMed  Google Scholar 

  17. Gross RW, Han X (2011) Lipidomics at the interface of structure and function in systems biology. Chem Biol 18:284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tukiainen T, Tynkkynen T, Mäkinen V-P, Jylänki P, Kangas A, Hokkanen J et al (2008) A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer’s disease. Biochem Biophys Res Commun 375:356–361

    Google Scholar 

  19. Nuzzo G, Gallo C, D’Ippolito G, Cutignano A, Sardo A, Fontana A (2013) Composition and quantitation of microalgal lipids by ERETIC 1H NMR method. Mar Drugs 11:3742–3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siciliano C, Belsito E, De Marco R, Di Gioia ML, Leggio A, Liguori A (2013) Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1H NMR spectroscopy. Food Chem 136:546–554

    Article  CAS  PubMed  Google Scholar 

  21. Ala-Korpela M, Korhonen A, Keisala J, Hörkkö S, Korpi P, Ingman LP et al (1994) 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J Lipid Res 35:2292–2304

    CAS  PubMed  Google Scholar 

  22. Meiboom S, Gill D (1958) Modified spin-Echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  23. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  24. Lopes TIB, Geloneze B, Pareja JC, Calixto AR, Ferreira MM, Marsaioli AJ (2015) Blood metabolome changes before and after bariatric surgery: a 1 H NMR-based clinical investigation. OMICS 19:318–327

    Article  CAS  PubMed  Google Scholar 

  25. Dyrby M, Petersen M, Whittaker AK, Lambertc L, Nørgaarda L, Bro R et al (2005) Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics. Anal Chim Acta 531:209–216

    Article  CAS  Google Scholar 

  26. Price WS, Elwinger F, Vigouroux C, Stilbs P (2002) PGSE-WATERGATE, a new tool for NMR diffusion-based studies of ligand-macromolecule binding. Magn Reson Chem 40:391–395

    Article  CAS  Google Scholar 

  27. Liu M, Mao X, Ye C, Huang H, Nicholson J, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132:125–129

    Article  CAS  Google Scholar 

  28. Lee GSH, Wilson MA, Young BR (1998) The application of the “WATERGATE” suppression technique for analyzing humic substances by nuclear magnetic resonance. Org Geochem 28:549–559

    Article  CAS  Google Scholar 

  29. Tranchida F, Shintu L, Rakotoniaina Z, Tchiakpe L, Deyris V, Hiol A et al (2015) Metabolomic and lipidomic analysis of serum samples following Curcuma longa extract supplementation in high-fructose and saturated fat fed rats. PLoS One 10:e0135948

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fernando H, Kondraganti S, Bhopale KK, Volk DE, Neerathilingam M, Kaphalia BS et al (2010) 1H and 31P NMR lipidome of ethanol-induced fatty liver. Alcohol Clin Exp Res 34:1937–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fernando H, Bhopale KK, Kondraganti S, Kaphalia BS, Shakeel Ansari GA (2011) Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicol Appl Pharmacol 255:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kostara CE, Tsimihodimos V, Elisaf MS, Bairaktari ET (2017) NMR-based lipid profiling of high density lipoprotein particles in healthy subjects with low, normal, and elevated HDL-cholesterol. J Proteome Res 16:1605–1616

    Article  CAS  PubMed  Google Scholar 

  33. Kostara CE, Papathanasiou A, Psychogios N, Cung MT, Elisaf MS, Goudevenos J et al (2014) NMR-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease. J Proteome Res 13:2585–2598

    Article  CAS  PubMed  Google Scholar 

  34. Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97

    Article  CAS  PubMed  Google Scholar 

  35. Savorani F, Rasmussen MA, Mikkelsen MS, Engelsen SB (2013) A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res Int 54:1131–1145

    Article  CAS  Google Scholar 

  36. Beger RD, Schnackenberg LK, Holland RD, Li D, Dragan Y (2006) Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics 2:125–134

    Article  CAS  Google Scholar 

  37. Ouldamer L, Nadal-Desbarats L, Chevalier S, Body G, Goupille C, Bougnoux P (2016) NMR-based lipidomic approach to evaluate controlled dietary intake of lipids in adipose tissue of a rat mammary tumor model. J Proteome Res 15:868–878

    Article  CAS  PubMed  Google Scholar 

  38. Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6:2812

    Article  CAS  Google Scholar 

  39. Weber M, Hellriegel C, Rueck A et al (2014) Using high-performance 1H NMR (HP-qNMR®) for the certification of organic reference materials under accreditation guidelines – describing the overall process with focus on homogeneity and stability assessment. J Pharm Biomed Anal 93:102–110

    Article  CAS  PubMed  Google Scholar 

  40. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. In: Curr Protoc Bioinforma. Wiley, Hoboken, NJ, pp 14.10.1–14.10.91

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubica Tasic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barbosa, B.S., Martins, L.G., Costa, T.B.B.C., Cruz, G., Tasic, L. (2018). Qualitative and Quantitative NMR Approaches in Blood Serum Lipidomics. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics