Skip to main content

Mapping DNA Breaks by Next-Generation Sequencing

  • Protocol
  • First Online:
Genome Instability

Abstract

Here, we present two approaches to map DNA double-strand breaks (DSBs) and single-strand breaks (SSBs) in the genome of human cells. We named these methods respectively DSB-Seq and SSB-Seq. We tested the DSB and SSB-Seq in HCT1116, human colon cancer cells, and validated the results using the topoisomerase 2 (Top2)-poisoning agent etoposide (ETO). These methods are powerful tools for the direct detection of the physiological and pathological “breakome” of the DNA in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Iacovoni JS et al (2010) High-resolution profiling of gammaH2AX around DNA double strand breaks in the mammalian genome. EMBO J 29(8):1446–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blitzblau HG, Hochwagen A (2011) Genome-wide detection of meiotic DNA double-strand break hotspots using single-stranded DNA. Methods Mol Biol 745:47–63

    Article  CAS  PubMed  Google Scholar 

  3. Hu J et al (2016) Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc 11(5):853–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klein IA et al (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147(1):95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiarle R et al (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147(1):107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai SQ et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197

    Article  CAS  PubMed  Google Scholar 

  7. Wang XL et al (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33(2):175–178

    Article  CAS  PubMed  Google Scholar 

  8. Crosetto N et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10(4):361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canela A et al (2016) DNA breaks and end resection measured genome-wide by end sequencing. Mol Cell 63(5):898–911

    Article  CAS  PubMed  Google Scholar 

  10. Aguilera A, Garcia-Muse T (2013) Causes of genome instability. Annu Rev Genet 47:1–32

    Article  CAS  PubMed  Google Scholar 

  11. Baranello L et al (2014) DNA break mapping reveals topoisomerase II activity genome-wide. Int J Mol Sci 15(7):13111–13122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rigby PW et al (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113(1):237–251

    Article  CAS  PubMed  Google Scholar 

  13. Kouzine F et al (2013) Global regulation of promoter melting in naive lymphocytes. Cell 153(5):988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bardet AF et al (2012) A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 7(1):45–61

    Article  CAS  Google Scholar 

  16. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631

    Article  CAS  PubMed  Google Scholar 

  17. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  CAS  PubMed  Google Scholar 

  18. Sartori AA et al (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Baranello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Baranello, L. et al. (2018). Mapping DNA Breaks by Next-Generation Sequencing. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics