Skip to main content

An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational–experimental pipeline that identifies a pathway’s optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway’s optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway’s sequence–expression–activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alper H et al (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102(36):12678–12683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mutalik VK et al (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10(4):354–360

    Article  CAS  PubMed  Google Scholar 

  3. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42

    Article  CAS  PubMed  Google Scholar 

  4. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carrier T, Jones KL, Keasling JD (1998) mRNA stability and plasmid copy number effects on gene expression from an inducible promoter system. Biotechnol Bioeng 59(6):666–672

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y et al (2012) Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Res 12(5):598. LP-607

    Article  CAS  PubMed  Google Scholar 

  7. Jack BR et al (2015) Predicting the genetic stability of engineered DNA sequences with the EFM calculator. ACS Synth Biol 4(8):939–943

    Article  CAS  PubMed  Google Scholar 

  8. Sleight SC et al (2010) Designing and engineering evolutionary robust genetic circuits. J Biol Eng 4(1):1–20

    Article  Google Scholar 

  9. Skancke J et al (2015) Sequence-dependent promoter escape efficiency is strongly influenced by bias for the pretranslocated state during initial transcription. Biochemistry 54(28):4267–4275

    Article  CAS  PubMed  Google Scholar 

  10. Espah Borujeni A, Channarasappa AS, Salis HM (2014) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42(4):2646–2659

    Article  CAS  PubMed  Google Scholar 

  11. Espah Borujeni A, Salis HM (2016) Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism. J Am Chem Soc 138(22):7016–7023

    Article  CAS  PubMed  Google Scholar 

  12. Grosjean H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18(3):199–209

    Article  CAS  PubMed  Google Scholar 

  13. Tian T, Salis HM (2015) A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons. Nucleic Acids Res 43(14):7137–7151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casini A et al (2014) R2oDNA designer: computational design of biologically neutral synthetic DNA sequences. ACS Synth Biol 3(8):525–528

    Article  CAS  PubMed  Google Scholar 

  15. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39(3):1131–1141

    Article  CAS  PubMed  Google Scholar 

  16. Kosuri S et al (2013) Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A 110(34):14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brewster RC, Jones DL, Phillips R (2012) Tuning promoter strength through RNA polymerase binding site design in Escherichia coli. PLoS Comput Biol 8(12):e1002811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farasat I et al (2014) Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria. Mol Syst Biol 10:731–731

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khodayari A et al (2014) A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng 25:50–62

    Article  CAS  PubMed  Google Scholar 

  20. Theisen MK, Lafontaine Rivera JG, Liao JC (2016) Stability of ensemble models predicts productivity of enzymatic systems. PLoS Comput Biol 12(3):e1004800

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95(12):5606–5617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  23. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):1–7

    Article  Google Scholar 

  24. Weber E et al (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy KC (1998) Use of bacteriophage – recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang Y et al (2015) Multigene editing in the Escherichia coli genome using the CRISPR-Cas9 system. Appl Environ Microbiol 81(7):2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang HH et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ng CY et al (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng 29:86–96

    Article  CAS  PubMed  Google Scholar 

  29. Forde NR et al (2002) Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 99(18):11682–11687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fell DA (1998) Increasing the flux in metabolic pathways: a metabolic control analysis perspective. Biotechnol Bioeng 58(2–3):121–124

    Article  CAS  PubMed  Google Scholar 

  31. Smanski MJ et al (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32(12):1241–1249

    Article  CAS  PubMed  Google Scholar 

  32. Lin Z et al (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Factories 13:104

    Google Scholar 

  33. Nowroozi FF et al (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol 98(4):1567–1581

    Article  CAS  PubMed  Google Scholar 

  34. Su B et al (2015) Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 31:112–122

    Article  CAS  PubMed  Google Scholar 

  35. Ahmadi MK et al (2016) E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab Eng 38:382–388

    Article  CAS  PubMed  Google Scholar 

  36. Schmidl SR et al (2014) Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth Biol 3(11):820–831

    Article  CAS  PubMed  Google Scholar 

  37. Yang L et al (2014) Permanent genetic memory with >1-byte capacity. Nat Methods 11(12):1261–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou J et al (2014) Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. J Biotechnol 169:42–50

    Article  CAS  PubMed  Google Scholar 

  39. Moon TS et al (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75(3):589–595

    Article  CAS  PubMed  Google Scholar 

  40. Ajikumar PK et al (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science (New York, NY) 330(6000):70–74

    Article  CAS  Google Scholar 

  41. Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10(10):837–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brockman IM, Prather KLJ (2015) Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab Eng 28:104–113

    Article  CAS  PubMed  Google Scholar 

  43. Soma Y, Hanai T (2015) Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng 30:7–15

    Article  CAS  PubMed  Google Scholar 

  44. Xu P et al (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111(31):11299–11304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang M et al (2016) Intermediate-sensor assisted push–pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng 33:41–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard M. Salis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Halper, S.M., Cetnar, D.P., Salis, H.M. (2018). An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics