Skip to main content

Using Fluorescence In Situ Hybridization (FISH) Analysis to Measure Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative Diseases

  • Protocol
  • First Online:
Genomic Mosaicism in Neurons and Other Cell Types

Part of the book series: Neuromethods ((NM,volume 131))

Abstract

Chromosome instability is a form of genomic instability that leads to cells with an abnormal number of chromosomes, defined as aneuploidy. Aneuploidy that results from chromosome instability can be complete or mosaic, depending on whether all or only some of the cells that make up an organism have an abnormal number of chromosomes. Aneuploidy is associated with many human conditions, such as cancer and Down syndrome (DS, trisomy 21), and it has more recently become a focus of investigation in neurodegenerative diseases, including Alzheimer’s disease (AD), Niemann-Pick C1 (NPC), and frontotemporal lobar degeneration (FTLD). In these disorders, aneuploid cells in affected brain regions appear to contribute significantly to apoptosis and neurodegeneration, and may thus underlie the associated cognitive deficits. Herein, we describe the methods that our laboratory has developed to analyze the frequency of chromosome instability (i.e., mosaic aneuploidy) in AD, NPC, and FTLD and associated cell death. Our goal is to provide the reader with guidelines for using these methods and to offer insights into their utility and potential limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boeras DI, Granic A, Padmanabhan J, Crespo NC, Rojiani AM, Potter H (2008) Alzheimer’s presenilin 1 causes chromosome missegregation and aneuploidy. Neurobiol Aging 29(3):319–328. doi:10.1016/j.neurobiolaging.2006.10.027

    Article  CAS  PubMed  Google Scholar 

  2. Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D, Harold D, Sims R, Abraham R, Hollingworth P, Chapman J, Hamshere M, Pahwa JS, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Johnston JA, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Kolsch H, Heun R, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Davies G, Harris SE, Starr JM, Deary IJ, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Jones L, Holmans PA, O’Donovan MC, Owen MJ, Williams J (2012) The role of variation at AbetaPP, PSEN1, PSEN2, and MAPT in late onset Alzheimer’s disease. J Alzheimers Dis 28(2):377–387. doi:10.3233/JAD-2011-110824

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Granic A, Padmanabhan J, Norden M, Potter H (2010) Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP. Mol Biol Cell 21(4):511–520. doi:10.1091/mbc.E09-10-0850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. doi:10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van der Kant R, Goldstein LS (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32(4):502–515. doi:10.1016/j.devcel.2015.01.022

    Article  PubMed  Google Scholar 

  6. Goate A, Hardy J (2012) Twenty years of Alzheimer’s disease-causing mutations. J Neurochem 120(Suppl 1):3–8. doi:10.1111/j.1471-4159.2011.07575.x

    Article  CAS  PubMed  Google Scholar 

  7. Cai Y, An SS, Kim S (2015) Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin Interv Aging 10:1163–1172. doi:10.2147/CIA.S85808

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Selkoe DJ (1998) The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8(11):447–453

    Article  CAS  PubMed  Google Scholar 

  9. Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8(2):136–140. doi:10.1038/sj.embor.7400896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J, Kelleher RJ 3rd (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease. Neuron 85(5):967–981. doi:10.1016/j.neuron.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xia W (2000) Role of presenilin in gamma-secretase cleavage of amyloid precursor protein. Exp Gerontol 35(4):453–460

    Article  CAS  PubMed  Google Scholar 

  12. Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818. doi:10.1038/nn.2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48. doi:10.1186/1750-1326-9-48

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arendt T, Bruckner MK, Mosch B, Losche A (2010) Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol 177(1):15–20. doi:10.2353/ajpath.2010.090955

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23(7):2557–2563

    CAS  PubMed  Google Scholar 

  16. Lee VM, Trojanowski JQ (2006) Progress from Alzheimer’s tangles to pathological tau points towards more effective therapies now. J Alzheimers Dis 9(3 Suppl):257–262

    Article  CAS  PubMed  Google Scholar 

  17. Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee G, Leugers CJ (2012) Tau and tauopathies. Prog Mol Biol Transl Sci 107:263–293. doi:10.1016/B978-0-12-385883-2.00004-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duesberg P, Rasnick D (2000) Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 47(2):81–107. doi:10.1002/1097-0169(200010)47:281::AID-CM13.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  20. Jefford CE, Irminger-Finger I (2006) Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 59(1):1–14. doi:10.1016/j.critrevonc.2006.02.005

    Article  PubMed  Google Scholar 

  21. Ried T (2009) Homage to Theodor Boveri (1862–1915): Boveri’s theory of cancer as a disease of the chromosomes, and the landscape of genomic imbalances in human carcinomas. Environ Mol Mutagen 50(8):593–601. doi:10.1002/em.20526

    Article  CAS  PubMed  Google Scholar 

  22. Potter H (1991) Review and hypothesis: Alzheimer disease and down syndrome—chromosome 21 nondisjunction may underlie both disorders. Am J Hum Genet 48(6):1192–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Geller LN, Potter H (1999) Chromosome missegregation and trisomy 21 mosaicism in Alzheimer’s disease. Neurobiol Dis 6(3):167–179. doi:10.1006/nbdi.1999.0236

    Article  CAS  PubMed  Google Scholar 

  24. Iourov IY, Vorsanova SG, Yurov YB (2011) Genomic landscape of the Alzheimer’s disease brain: chromosome instability—aneuploidy, but not tetraploidy—mediates neurodegeneration. Neurodegener Dis 8(1–2):35–37. doi:10.1159/000315398; discussion 38-40

    PubMed  Google Scholar 

  25. Kingsbury MA, Yung YC, Peterson SE, Westra JW, Chun J (2006) Aneuploidy in the normal and diseased brain. Cell Mol Life Sci 63(22):2626–2641. doi:10.1007/s00018-006-6169-5

    Article  CAS  PubMed  Google Scholar 

  26. Migliore L, Botto N, Scarpato R, Petrozzi L, Cipriani G, Bonuccelli U (1999) Preferential occurrence of chromosome 21 malsegregation in peripheral blood lymphocytes of Alzheimer disease patients. Cytogenet Cell Genet 87(1–2):41–46

    Article  CAS  PubMed  Google Scholar 

  27. Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27(26):6859–6867. doi:10.1523/JNEUROSCI.0379-07.2007

    Article  CAS  PubMed  Google Scholar 

  28. Ringman JM, Rao PN, PH L, Cederbaum S (2008) Mosaicism for trisomy 21 in a patient with young-onset dementia: a case report and brief literature review. Arch Neurol 65(3):412–415. doi:10.1001/archneur.65.3.412

    Article  PubMed  Google Scholar 

  29. Thomas P, Fenech M (2008) Chromosome 17 and 21 aneuploidy in buccal cells is increased with ageing and in Alzheimer’s disease. Mutagenesis 23(1):57–65. doi:10.1093/mutage/gem044

    Article  CAS  PubMed  Google Scholar 

  30. Trippi F, Botto N, Scarpato R, Petrozzi L, Bonuccelli U, Latorraca S, Sorbi S, Migliore L (2001) Spontaneous and induced chromosome damage in somatic cells of sporadic and familial Alzheimer’s disease patients. Mutagenesis 16(4):323–327

    Article  CAS  PubMed  Google Scholar 

  31. Westra JW, Barral S, Chun J (2009) A reevaluation of tetraploidy in the Alzheimer’s disease brain. Neurodegener Dis 6(5–6):221–229. doi:10.1159/000236901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frade JM, Lopez-Sanchez N (2010) A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75 (NTR). Cell Cycle 9(10):1934–1941. doi:10.4161/cc.9.10.11582

    Article  CAS  PubMed  Google Scholar 

  33. Lopez-Sanchez N, Frade JM (2013) Genetic evidence for p75NTR-dependent tetraploidy in cortical projection neurons from adult mice. J Neurosci 33(17):7488–7500. doi:10.1523/JNEUROSCI.3849-12.2013

    Article  CAS  PubMed  Google Scholar 

  34. Borysov SI, Granic A, Padmanabhan J, Walczak CE, Potter H (2011) Alzheimer Abeta disrupts the mitotic spindle and directly inhibits mitotic microtubule motors. Cell Cycle 10(9):1397–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Falnikar A, Tole S, Baas PW (2011) Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration. Mol Biol Cell 22(9):1561–1574. doi:10.1091/mbc.E10-11-0905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21(3):255–259. doi:10.1016/j.semcdb.2010.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scholey JE, Nithianantham S, Scholey JM, Al-Bassam J (2014) Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. elife 3:e02217. doi:10.7554/eLife.02217

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Hancock WO (2015) Kinesin-5 is a microtubule polymerase. Nat Commun 6:8160. doi:10.1038/ncomms9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Potter H (2005) Cell cycle and chromosome segregation defects in Alzheimer’s disease. In: ACAF N (ed) Cell cycle mechanisms and neuronal cell death. Landes Bioscience/Eurekah.com/Kluwer Academic/Plenum Publishers, Georgetown, TX/New York, NY, pp 55–78

    Chapter  Google Scholar 

  40. Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 21(8):2661–2668

    CAS  PubMed  Google Scholar 

  41. Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18(14):2656–2669. doi:10.1093/hmg/ddp207

    Article  CAS  PubMed  Google Scholar 

  42. Granic A, Potter H (2013) Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer’s disease, and atherosclerosis. PLoS One 8(4):e60718. doi:10.1371/journal.pone.0060718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Shepherd C, Halliday G (2015) Aneuploidy in Lewy body diseases. Neurobiol Aging 36(3):1253–1260. doi:10.1016/j.neurobiolaging.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  44. Rossi G, Conconi D, Panzeri E, Paoletta L, Piccoli E, Ferretti MG, Mangieri M, Ruggerone M, Dalpra L, Tagliavini F (2014) Mutations in MAPT give rise to aneuploidy in animal models of tauopathy. Neurogenetics 15(1):31–40. doi:10.1007/s10048-013-0380-y

    Article  CAS  PubMed  Google Scholar 

  45. Rossi G, Conconi D, Panzeri E, Redaelli S, Piccoli E, Paoletta L, Dalpra L, Tagliavini F (2013) Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome. J Alzheimers Dis 33(4):969–982. doi:10.3233/JAD-2012-121633

    CAS  PubMed  Google Scholar 

  46. Bouge AL, Parmentier ML (2016) Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech 9(3):307–319. doi:10.1242/dmm.022558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7(1):72–81

    Article  CAS  PubMed  Google Scholar 

  48. Freund RK, Gibson ES, Potter H, Dell’Acqua ML (2016) Inhibition of the motor protein Eg5/Kinesin-5 in amyloid beta-mediated impairment of hippocampal long-term potentiation and dendritic spine loss. Mol Pharmacol 89(5):552–559. doi:10.1124/mol.115.103085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kopeikina KJ, Hyman BT, Spires-Jones TL (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Transl Neurosci 3(3):223–233. doi:10.2478/s13380-012-0032-y

    Article  PubMed  PubMed Central  Google Scholar 

  50. Takashima A (2008) Hyperphosphorylated tau is a cause of neuronal dysfunction in tauopathy. J Alzheimers Dis 14(4):371–375

    Article  PubMed  Google Scholar 

  51. Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid beta peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115(1):201–211

    Article  CAS  PubMed  Google Scholar 

  52. Oromendia AB, Amon A (2014) Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech 7(1):15–20. doi:10.1242/dmm.013391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dalton WB, Yu B, Yang VW (2010) p53 suppresses structural chromosome instability after mitotic arrest in human cells. Oncogene 29(13):1929–1940. doi:10.1038/onc.2009.477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131(3):437–440. doi:10.1016/j.cell.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  55. Jeganathan K, Malureanu L, Baker DJ, Abraham SC, van Deursen JM (2007) Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J Cell Biol 179(2):255–267. doi:10.1083/jcb.200706015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuffer C, Kuznetsova AY, Storchova Z (2013) Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma 122(4):305–318. doi:10.1007/s00412-013-0414-0

    Article  CAS  PubMed  Google Scholar 

  57. Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121(Pt 23):3859–3866. doi:10.1242/jcs.039537

    Article  CAS  PubMed  Google Scholar 

  58. Kulnane LS, Lehman EJ, Hock BJ, Tsuchiya KD, Lamb BT (2002) Rapid and efficient detection of transgene homozygosity by FISH of mouse fibroblasts. Mamm Genome 13(4):223–226. doi:10.1007/s00335-001-2128-5

    Article  CAS  PubMed  Google Scholar 

  59. Liesi P, Fried G, Stewart RR (2001) Neurons and glial cells of the embryonic human brain and spinal cord express multiple and distinct isoforms of laminin. J Neurosci Res 64(2):144–167. doi:10.1002/jnr.1061

    Article  CAS  PubMed  Google Scholar 

  60. Pacey L, Stead S, Gleave JA, Tomczyk K, Doering L (2006) Neural stem cell culture: neurosphere generation, microscopical analysis and cryopreservation. Protoc Exchan. doi:10.1038/nprot.2006.21

  61. Marchenko S, Flanagan L (2007) Passing human neuronal stem cells. J Vis Exp 7

    Google Scholar 

  62. Waitzman JS, Rice SE (2014) Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle. Biol Cell 106(1):1–12. doi:10.1111/boc.201300054

    Article  CAS  PubMed  Google Scholar 

  63. Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158. doi:10.1016/S0074-7696(07)65003-7

    Article  CAS  PubMed  Google Scholar 

  64. Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3(1):E28–E34. doi:10.1038/35050669

    Article  CAS  PubMed  Google Scholar 

  65. Gillespie PJ, Gambus A, Blow JJ (2012) Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 57(2):203–213. doi:10.1016/j.ymeth.2012.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iourov IY, Vorsanova SG, Liehr T, Yurov YB (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220. doi:10.1016/j.nbd.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  67. Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nat Struct Biol 9(4):239–241. doi:10.1038/nsb0402-239

    Article  CAS  PubMed  Google Scholar 

  68. Wei Z, Song MS, MacTavish D, Jhamandas JH, Kar S (2008) Role of calpain and caspase in beta-amyloid-induced cell death in rat primary septal cultured neurons. Neuropharmacology 54(4):721–733. doi:10.1016/j.neuropharm.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  69. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J (1999) Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett 453(3):260–264

    Article  CAS  PubMed  Google Scholar 

  70. Bertsch S, Lang CH, Vary TC (2011) Inhibition of glycogen synthase kinase 3[beta] activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. Shock 35(3):266–274. doi:10.1097/SHK.0b013e3181fd068c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31(4):317–323

    Article  CAS  PubMed  Google Scholar 

  72. Knouse KA, Wu J, Whittaker CA, Amon A (2014) Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 111(37):13409–13414. doi:10.1073/pnas.1415287111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van den Bos H, Spierings DC, Taudt AS, Bakker B, Porubsky D, Falconer E, Novoa C, Halsema N, Kazemier HG, Hoekstra-Wakker K, Guryev V, den Dunnen WF, Foijer F, Tatche MC, Boddeke HW, Lansdorp PM (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol 17(1):116. doi:10.1186/s13059-016-0976-2

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    CAS  PubMed  Google Scholar 

  75. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85. doi:10.1186/1750-1326-6-85

    Article  PubMed  PubMed Central  Google Scholar 

  76. Potter H, Granic A, Caneus J (2016) Role of trisomy 21 mosaicism in sporadic and familial Alzheimer’s disease. Curr Alzheimer Res 13(1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huntington Potter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Caneus, J., Granic, A., Chial, H.J., Potter, H. (2017). Using Fluorescence In Situ Hybridization (FISH) Analysis to Measure Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative Diseases. In: Frade, J., Gage, F. (eds) Genomic Mosaicism in Neurons and Other Cell Types. Neuromethods, vol 131. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7280-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7280-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7279-1

  • Online ISBN: 978-1-4939-7280-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics