Skip to main content

MALDI Mass Spectrometry Profiling and Imaging Applied to the Analysis of Latent Fingermarks

  • Protocol
  • First Online:
Imaging Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1618))

Abstract

Latent fingermarks are derived from a transfer of material from the fingertips to a surface upon contact. Traditionally, fingermarks are employed for biometric identification of individuals based on matching of the pattern of the ridges. However, in recent years, there has been a stark increase in the use of advanced analytical techniques in order to obtain additional information, specifically the chemical composition of the residue. Understanding the complexity of the endogenous and exogenous content of fingermarks could be extremely useful in allowing further development of enhancement techniques currently used in forensic scenarios by identifying potential target molecules. This chemical information could also potentially provide invaluable information on the lifestyle of an individual, including their activities prior to depositing a mark.

An analytical tool that has gained notable popularity in this novel area of research is matrix-assisted laser desorption/ionisation mass spectrometry (MALDI MS). This technique can either be employed for rapid chemical profiling or imaging of fingermarks to detect chemical species contained within the residue, with the latter also allowing for physical reconstruction of the fingermark ridges.

This chapter will provide an overview of the protocols employed to allow for both MALDI MS profiling and imaging analysis of latent fingermarks, specifically covering the types of fingermarks employed and techniques used to deposit matrices onto samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Champod C, Lennard CJ, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions. CRC Press LLC, London

    Book  Google Scholar 

  2. Sears V, Bleay S, Bandey H, Bowman V (2012) A methodology for finger mark research. Sci Justice 52:145–160

    Article  CAS  PubMed  Google Scholar 

  3. Girod A, Weyermann C (2014) Lipid composition of fingermark residue and donor classification using GC/MS. Forensic Sci Int 238:68–82

    Article  CAS  PubMed  Google Scholar 

  4. Leggett R, Lee-Smith E, Jickells S, Russell D (2007) “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals by using antibody-functionalized nanoparticles. Angew Chem Int Ed 46:4100–4103

    Article  CAS  Google Scholar 

  5. Hazarika P, Jickells S, Wolff K, Russell D (2008) Imaging of latent fingerprints through the detection of drugs and metabolites. Angew Chem 120:10321–10324

    Article  Google Scholar 

  6. Drapel V, Becue A, Champod C, Margot P (2009) Identification of promising antigenic components in latent fingermark residues. Forensic Sci Int 184:47–53

    Article  CAS  PubMed  Google Scholar 

  7. Spindler X, Hofstetter O, McDonagh A, Roux C, Lennard C (2011) Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem Commun 47:5602–5604

    Article  CAS  Google Scholar 

  8. Van Dam A, Aalders M, Van Leeuwen T, Lambrechts S (2013) The compatibility of fingerprint visualization techniques with immunolabeling. J Forensic Sci 58(4):999–1002

    Article  PubMed  Google Scholar 

  9. Van Dam A, Aalders M, De Puit M, Gorré S, Irmak D, Van Leeuwen T, Lambrechts S (2014) Immunolabeling and the compatibility with a variety of fingermark development techniques. Sci Justice 54:356–362

    Article  PubMed  Google Scholar 

  10. Van der Heide S, Calavia P, Hardwick S, Hudson S, Wolff K, Russell D (2015) A competitive enzyme immunoassay for the quantitative detection of cocaine from banknotes and latent fingermarks. Forensic Sci Int 250:1–7

    Article  PubMed  Google Scholar 

  11. Lam R, Hofstetter O, Lennard C, Roux C, Spindler X (2016) Evaluation of multi-target immunogenic reagents for the detection of latent and body fluid-contaminated fingermarks. Forensic Sci Int 264:168–175

    Article  CAS  PubMed  Google Scholar 

  12. Day J, Edwards H, Dobrowski S, Voice A (2004a) The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints. Spectrochim Acta A Mol Biomol Spectrosc 60:563–568

    Article  PubMed  Google Scholar 

  13. Day J, Edwards H, Dobrowski S, Voice A (2004b) The detection of drugs of abuse in fingerprints using Raman spectroscopy II: cyanoacrylate-fumed fingerprints. Spectrochim Acta A Mol Biomol Spectrosc 60:1725–1730

    Article  PubMed  Google Scholar 

  14. Tahtouh M, Kalman J, Roux C, Lennard C, Reedy B (2005) The detection and enhancement of latent fingermarks using infrared chemical imaging. J Forensic Sci 50(1):1–9

    Article  Google Scholar 

  15. West M, Went M (2008) The spectroscopic detection of exogenous material in fingerprints after development with powders and recovery with adhesive lifters. Forensic Sci Int 174:1–5

    Article  CAS  PubMed  Google Scholar 

  16. West M, Went M (2009) The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifters. Spectrochim Acta A Mol Biomol Spectrosc 7:1984–1988

    Article  Google Scholar 

  17. Widjaja E (2009) Latent fingerprints analysis using tape-lift, Raman microscopy, and multivariate data analysis methods. Analyst 134:769–775

    Article  CAS  PubMed  Google Scholar 

  18. Bradshaw R, Wolstenholme R, Ferguson L, Mader K, Sammon C, Blackledge RD, Clench MR, Francese S (2013a) Spectroscopic Imaging based approach for condom identification in condom contaminated fingermarks. Analyst 138(9):2546–2557

    Article  CAS  PubMed  Google Scholar 

  19. Banas A, Banas K, Breese B, Loke J, Lim S (2014) Spectroscopic detection of exogenous materials in latent fingerprints treated with powders and lifted off with adhesive tapes. Anal Bioanal Chem 17:4178–4181

    Google Scholar 

  20. Girod A, Xiao L, Reedy B, Roux C, Weyermann C (2015) Fingermark initial composition and aging using Fourier transform infrared microscopy (m-FTIR). Forensic Sci Int 254:185–196

    Article  CAS  PubMed  Google Scholar 

  21. Archer N, Charles Y, Elliott J, Jickells S (2005) Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci Int 154:224–239

    Article  CAS  PubMed  Google Scholar 

  22. Croxton R, Baron M, Butler D, Kent T, Sears V (2010) Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci Int 199:93–102

    Article  CAS  PubMed  Google Scholar 

  23. Weyermann C, Roux C, Champod C (2011) Initial results on the composition of fingerprints and its evolution as a function of time by GC⁄MS analysis. J Forensic Sci 56:102–108

    Article  CAS  PubMed  Google Scholar 

  24. Michalski S, Shaler R, Dorman F (2013) The evaluation of fatty acid ratios in latent fingermarks by gas chromatography/mass spectrometry (GC/MS) analysis. J Forensic Sci 58:215–220

    Article  Google Scholar 

  25. Mink T, Voorhaar A, Stoel R, de Puit M (2013) Determination of efficacy of fingermark enhancement reagents; the use of propyl chloroformate for the derivatization of fingerprint amino acids extracted from paper. Sci Justice 53:301–308

    Article  CAS  PubMed  Google Scholar 

  26. Frick A, Chidlow G, Lewis S, van Bronswijk W (2015) Investigations into the initial composition of latent fingermark lipids by gas chromatography–mass spectrometry. Forensic Sci Int 254:133–147

    Article  CAS  PubMed  Google Scholar 

  27. Girod A, Spyratou A, Holmes D, Weyermann C (2016) Aging of target lipid parameters in fingermark residue using GC/MS: effects of influence factors and perspectives for dating purposes. Sci Justice 56:165–180

    Article  PubMed  Google Scholar 

  28. Zhang T, Chen X, Yang R, Xu Y (2015) Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography–mass spectrometry. Forensic Sci Int 248:10–14

    Article  CAS  PubMed  Google Scholar 

  29. Ifa D, Manicke N, Dill A, Cooks G (2008) Latent fingerprint chemical imaging by mass spectrometry. Science 321:805

    Article  CAS  PubMed  Google Scholar 

  30. Mirabelli M, Chramow A, Cabral E, Ifa D (2011) Analysis of sexual assault evidence by desorption electrospray ionization mass spectrometry. J Mass Spectrom 48:774–778

    Article  Google Scholar 

  31. Comi T, Ryu S, Perry R (2016) Synchronized desorption electrospray ionization mass spectrometry imaging. Anal Chem 88:1169–1175

    Article  CAS  PubMed  Google Scholar 

  32. Rowell F, Hudson K, Seviour J (2009) Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry. Analyst 134:701–707

    Article  CAS  PubMed  Google Scholar 

  33. Benton M, Rowell F, Sundar L, Jan M (2010a) Direct detection of nicotine and cotinine in dusted latent fingermarks of smokers by using hydrophobic silica particles and MS. Surf Interface Anal 42:378–385

    Article  CAS  Google Scholar 

  34. Benton M, Chu M, Gu F, Rowell F, Ma J (2010b) Environmental nicotine contamination in latent fingermarks from smoker contacts and passive smoking. Forensic Sci Int 200:28–34

    Article  CAS  PubMed  Google Scholar 

  35. Lim A, Ma Z, Ma J, Rowell F (2011) Separation of fingerprint constituents using magnetic silica nanoparticles and direct on-particle SALDI-TOF-mass spectrometry. J Chromatogr B 879:2244–2250

    Article  CAS  Google Scholar 

  36. Lim A, Seviour J (2012) Doped silica nanoparticles for the detection of pharmaceutical Terbinafine in latent fingerprints by mass spectrometry. Anal Methods 4:1983–1198

    Article  CAS  Google Scholar 

  37. Rowell F, Seviour J, Lim A, Elumbaring-Salazar C, Loke J, Ma J (2012) Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry. Forensic Sci Int 221:84–91

    Article  CAS  PubMed  Google Scholar 

  38. Nizioł J, Ruman T (2013) Surface-transfer mass spectrometry imaging on a monoisotopic silver nanoparticle enhanced target. Anal Chem 85:12070–12076

    Article  PubMed  Google Scholar 

  39. Sundar L, Rowell F (2014) Detection of drugs in lifted cyanoacrylate developed latent fingermarks using two laser desorption/ionisation mass spectrometric methods. Analyst 139:633–642

    Article  CAS  PubMed  Google Scholar 

  40. Tang H, Lu W, Che C, Ng K (2010) Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints. Lett Anal Chem 82:1589–1593

    Article  CAS  Google Scholar 

  41. Szynkowska M, Czerskia K, Gramsa J, Paryjczaka T, Parczewskib A (2007) Preliminary studies using imaging mass spectrometry TOF-SIMS in detection and analysis of fingerprints. Imag Sci J 55(3):180–187

    Article  CAS  Google Scholar 

  42. Szynkowska M, Czerski K, Rogowski J, Paryjczak T, Parczewski A (2009) ToF-SIMS application in the visualization and analysis of fingerprints after contact with amphetamine drugs. Forensic Sci Int 184:24

    Article  Google Scholar 

  43. Szynkowska M, Czerski K, Rogowski J, Paryjczaka T, Parczewski A (2010) Detection of exogenous contaminants of fingerprints using ToF-SIMS. Surf Interface Anal 42:393

    Article  CAS  Google Scholar 

  44. Bailey M, Jones B, Hinder S, Watts J, Bleay S, Webb R (2010) Depth profiling of fingerprint and ink signals by SIMS and MeV SIMS. Nucl Instrum Methods Phys Res, Sect B 268:1929–1932

    Article  CAS  Google Scholar 

  45. Bright N, Willson T, Driscoll D, Reddy S, Webb R, Bleay S, Ward N, Kirkby K, Bailey M (2013) Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions. Forensic Sci Int 230:81–86

    Article  CAS  PubMed  Google Scholar 

  46. Attard-Montalto N, Ojeda J, Jones B (2013) Determining the order of deposition of natural latent fingerprints and laser printed ink using chemical mapping with secondary ion mass spectrometry. Sci Justice 53:2–7

    Article  CAS  PubMed  Google Scholar 

  47. Bailey M, Ismail M, Bleay S, Bright N, Elad N, Cohen Y, Geller B, Everson D, Costa C, Webb R, Watts J, de Puit M (2013) Enhanced imaging of developed fingerprints using mass spectrometry imaging. Analyst 138:6246–6250

    Article  CAS  PubMed  Google Scholar 

  48. Musah R, Cody R, Dane A, Vuong A, Shepard J (2012) Direct analysis in real time mass spectrometry for analysis of sexual assault evidence. Rapid Commun Mass Spectrom 26:1039–1046

    Article  CAS  PubMed  Google Scholar 

  49. Emerson B, Gidden J, Lay J Jr, Durham B (2011) Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples. J Forensic Sci 56(2):381–389

    Article  CAS  PubMed  Google Scholar 

  50. Lauzon N, Dufresne M, Chauhan V, Chaurand P (2015) Development of laser desorption imaging mass spectrometry methods to investigate the molecular composition of latent fingermarks. J Am Soc Mass Spectrom 26(6):878–886

    Article  CAS  PubMed  Google Scholar 

  51. Francese S (2015) Techniques for fingermark analysis using MALDI MS - a practical overview. In: Cramer R (ed) Advances in MALDI and laser induced soft ionisation mass spectrometry. Springer, New York, NY. isbn:978-3-319-04818-5

    Google Scholar 

  52. Wolstenholme R, Bradshaw R, Clench M, Francese S (2009) Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Commun Mass Spectrom 23:3031–3039

    Article  CAS  PubMed  Google Scholar 

  53. Bradshaw R, Wolstenholme R, Blackledge R, Clench MR, Ferguson L, Francese S (2011) A novel matrix-assisted laser desorption/ionisation mass spectrometry imaging based methodology for the identification of sexual assault suspects. Rapid Commun Mass Spectrom 25:415–422

    Article  CAS  PubMed  Google Scholar 

  54. Bradshaw R, Rao W, Wolstenholme R, Clench MR, Bleay S, Francese S (2012) Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging. Forensic Sci Int 222(1-3):318–326

    Article  CAS  PubMed  Google Scholar 

  55. Bradshaw R, Bleay S, Clench MR, Francese S (2014) Direct detection of blood in fingermarks by MALDI MS profiling and Imaging. Sci Justice 54:110–117

    Article  CAS  PubMed  Google Scholar 

  56. Patel E, Cicatiello P, Deininger L, Clench M, Marino G, Giardina P, Langenburg G, West A, Marshall P, Searse V, Francese S (2016) A proteomic approach for the rapid, multi-informative and reliable identification of blood. Analyst 141:191–198

    Article  CAS  PubMed  Google Scholar 

  57. Deininger L, Patel E, Clench M, Sears V, Sammon C, Francese S (2016) Proteomics goes forensic: detection and mapping of blood signatures in fingermarks. Proteomics 16(11-12):1707–1717

    Article  CAS  PubMed  Google Scholar 

  58. Groeneveld G, De Puit M, Bleay S, Bradshaw R, Francese S (2015) Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques. Sci Rep 5:11716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bailey M, Bradshaw R, Francese S, Salter T, Costa C, Ismail M, Webb R, Bosman I, Wolff K, de Puit M (2015) Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst 140(18):6254–6259

    Article  CAS  PubMed  Google Scholar 

  60. Kaplan-Sandquist K, LeBeau M, Miller M (2014) Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Forensic Sci Int 235:68–77

    Article  CAS  PubMed  Google Scholar 

  61. Ferguson L, Wulfert F, Wolstenholme R, Fonville J, Clench MR, Carolan V, Francese S (2012) Direct detection of peptides and small proteins in fingermarks and determination of sex by MALDI mass spectrometry profiling. Analyst 137:4686–4692

    Article  CAS  PubMed  Google Scholar 

  62. Ferguson L, Bradshaw R, Wolstenholme R, Clench M, Francese S (2011) Two-step matrix application for the enhancement and imaging of latent fingermarks. Anal Chem 83(14):5585–5591

    Article  CAS  PubMed  Google Scholar 

  63. Ferguson L, Creasey S, Wolstenholme R, Clench M, Francese S (2012) Efficiency of the dry-wet method for the MALDI-MSI analysis of latent fingermarks. J Mass Spectrom 48:677–684

    Article  Google Scholar 

  64. Bradshaw R, Bleay S, Wolstenholme R, Clench MR, Francese S (2013b) Towards the integration of matrix assisted laser desorption ionisation mass spectrometry imaging into the current fingermark examination workflow. Forensic Sci Int 232:111–124

    Article  CAS  PubMed  Google Scholar 

  65. Reed H, Stanton A, Wheat J, Kelley J, Davis L, Rao A, Smith A, Owen D, Francese S (2016) The Reed-Stanton press rig for the generation of reproducible fingermarks: towards a standardised methodology for fingermark research. Sci Justice 56:9–17

    Article  CAS  PubMed  Google Scholar 

  66. Bradshaw R, Creissen A, Francese S (2013c), A rapid methodology for the analysis of latent fingermarks by MALDI MS imaging. Technical Note #32, HTX Technologies

    Google Scholar 

  67. Francese S, Bradshaw R, Flinders B, Mitchell C, Bleay S, Cicero L, Clench R (2013) Curcumin: a multipurpose matrix for MALDI mass spectrometry imaging applications. Anal Chem 85(10):5240–5248

    Article  CAS  PubMed  Google Scholar 

  68. Yagnik G, Kortea A, Lee Y (2013) Multiplex mass spectrometry imaging for latent fingerprints. J Mass Spectrom 48:100–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author of this chapter would like to thank the Head of the Fingermark Research Group (FRG), Dr Simona Francese, who has supervised every aspect of the fingermark research conducted at Sheffield Hallam University since the initial development of this application in 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bradshaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bradshaw, R. (2017). MALDI Mass Spectrometry Profiling and Imaging Applied to the Analysis of Latent Fingermarks. In: Cole, L. (eds) Imaging Mass Spectrometry . Methods in Molecular Biology, vol 1618. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7051-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7051-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7050-6

  • Online ISBN: 978-1-4939-7051-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics