Skip to main content

Methods for Monitoring ABCA1-Dependent Sterol Release

  • Protocol
  • First Online:
Cholesterol Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1583))

Abstract

Releasing sterols to the extracellular milieu is an important part of sterol homeostasis in cells and in the body. ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cellular phospholipid and sterol release to lipid-free or lipid-poor apolipoprotein A-I (apoA-I), the major apolipoprotein in high-density lipoprotein (HDL), and constitutes the first step in the formation of nascent HDL. Loss-of-function mutations in the ABCA1 gene lead to a rare disease known as Tangier disease that causes severe deficiency in plasma HDL level. Mammalian cells receive exogenous cholesterol mainly from low-density lipoprotein. In addition, they synthesize cholesterol endogenously, as well as multiple precursor sterols that are sterol intermediates en route to be converted to cholesterol. HDL contains phospholipids, cholesterol, and precursor sterols, and ABCA1 has an ability to release phospholipids and various sterol molecules. Recent studies using model cell lines showed that ABCA1 prefers to use sterols newly synthesized endogenously as its preferred substrate, rather than cholesterol derived from LDL or cholesterol being recycled within the cells. Here, we describe several methods at the cell culture level to monitor ABCA1-dependent release of sterol molecules to apoA-I present at the cell exterior. Sterol release can be assessed by using a simple colorimetric enzymatic assay, and/or by monitoring the radioactivities of radiolabeled cholesterol incorporated into the cells, and/or of sterols biosynthesized from radioactive acetate, and/or by using gas chromatography–mass spectrometry analysis of various sterols present in medium and in cells. We also discuss the pros and cons of these methods. Together, these methods allow researchers to detect the release not only of cholesterol but also of other sterols present in minor quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldstein J, DeBose-Boyd R, Brown M (2006) Protein sensors for membrane sterols. Cell 124:35–46

    Article  CAS  PubMed  Google Scholar 

  2. Chang T-Y, Chang CCY, Ohgami N, Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22:129–157

    Article  CAS  PubMed  Google Scholar 

  3. Tall A, Yvan-Charvet L, Terasaka N, Pagler T, Wang N (2008) HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 7:365–375

    Article  CAS  PubMed  Google Scholar 

  4. Tarling EJ, de Aguiar Vallim TQ, Edwards PA (2013) Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 24:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hara H, Yokoyama S (1991) Interaction of free apolipoproteins with macrophages. Formation of high density lipoprotein-like lipoproteins and reduction of cellular cholesterol. J Biol Chem 266:3080–3086

    CAS  PubMed  Google Scholar 

  6. Francis GA, Knopp RH, Oram JF (1995) Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier disease. J Clin Invest 96:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M et al (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    Article  CAS  PubMed  Google Scholar 

  8. Bodzioch M, Orsó E, Klucken J, Langmann T, Böttcher A, Diederich W et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    Article  CAS  PubMed  Google Scholar 

  9. Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC et al (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22:352–355

    Article  CAS  PubMed  Google Scholar 

  10. Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 14:47–92

    Article  CAS  PubMed  Google Scholar 

  11. Porter FD (2002) Malformation syndromes due to inborn errors of cholesterol synthesis. J Clin Invest 110:715–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Echevarria F, Norton R, Nes W, Lange Y (1990) Zymosterol is located in the plasma membrane of cultured human fibroblasts. J Biol Chem 265:8484–8489

    CAS  PubMed  Google Scholar 

  13. Johnson WJ, Fischer RT, Phillips MC, Rothblat GH (1995) Efflux of newly synthesized cholesterol and biosynthetic sterol intermediates from cells. Dependence on acceptor type and on enrichment of cells with cholesterol. J Biol Chem 270:25037–25046

    Article  CAS  PubMed  Google Scholar 

  14. Lusa S, Heino S, Ikonen E (2003) Differential mobilization of newly synthesized cholesterol and biosynthetic sterol precursors from cells. J Biol Chem 278:19844–19851

    Article  CAS  PubMed  Google Scholar 

  15. Yamauchi Y, Reid PC, Sperry JB, Furukawa K, Takeya M, Chang CCY, Chang T-Y (2007) Plasma membrane rafts complete cholesterol synthesis by participating in retrograde movement of precursor sterols. J Biol Chem 282:34994–35004

    Article  CAS  PubMed  Google Scholar 

  16. Yamauchi Y, Yokoyama S, Chang T-Y (2016) ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J Lipid Res 57:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koivisto PV, Miettinen TA (1988) Increased amounts of cholesterol precursors in lipoproteins after ileal exclusion. Lipids 23:993–996

    Article  CAS  PubMed  Google Scholar 

  18. Yamauchi Y, Iwamoto N, Rogers MA, Abe-Dohmae S, Fujimoto T, Chang CCY et al (2015) Deficiency in the lipid exporter ABCA1 impairs retrograde sterol movement and disrupts sterol sensing at the endoplasmic reticulum. J Biol Chem 290:23464–23477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cham BE, Knowles BR (1976) A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res 17:176–181

    CAS  PubMed  Google Scholar 

  20. Yokoyama S, Tajima S, Yamamoto A (1982) The process of dissolving apolipoprotein A-I in an aqueous buffer. J Biochem 91:1267–1272

    Article  CAS  PubMed  Google Scholar 

  21. Saito H, Dhanasekaran P, Nguyen D, Holvoet P, Lund-Katz S, Phillips MC (2003) Domain structure and lipid interaction in human apolipoproteins A-I and E, a general model. J Biol Chem 278:23227–23232

    Article  CAS  PubMed  Google Scholar 

  22. Okuhira K, Tsujita M, Yamauchi Y, Abe-Dohmae S, Kato K, Handa T, Yokoyama S (2004) Potential involvement of dissociated apoA-I in the ABCA1-dependent cellular lipid release by HDL. J Lipid Res 45:645–652

    Article  CAS  PubMed  Google Scholar 

  23. Vedhachalam C, Duong PT, Nickel M, Nguyen D, Dhanasekaran P, Saito H et al (2007) Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J Biol Chem 282:25123–25130

    Article  CAS  PubMed  Google Scholar 

  24. Yamauchi Y, Abe-Dohmae S, Yokoyama S (2002) Differential regulation of apolipoprotein A-I/ATP binding cassette transporter Al-mediated cholesterol and phospholipid release. BBA-Mol Cell Biol L 1585:1–10

    CAS  Google Scholar 

  25. Yamauchi Y, Chang CCY, Hayashi M, Abe-Dohmae S, Reid PC, Chang T-Y, Yokoyama S (2004) Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. J Lipid Res 45:1943–1951

    Article  CAS  PubMed  Google Scholar 

  26. Abe-Dohmae S, Suzuki S, Wada Y, Aburatani H, Vance D, Yokoyama S (2000) Characterization of apolipoprotein-mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry 39:11092–11099

    Article  CAS  PubMed  Google Scholar 

  27. Costet P, Luo Y, Wang N, Tall A (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275:28240–28245

    CAS  PubMed  Google Scholar 

  28. Hara H, Hara H, Komaba A, Yokoyama S (1992) Alpha-helical requirements for free apolipoproteins to generate HDL and to induce cellular lipid efflux. Lipids 27:302–304

    Google Scholar 

  29. Mendez AJ, Anantharamaiah GM, Segrest JP, Oram JF (1994) Synthetic amphipathic helical peptides that mimic apolipoprotein A-I in clearing cellular cholesterol. J Clin Invest 94:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Remaley AT, Thomas F, Stonik JA, Demosky SJ, Bark SE, Neufeld EB et al (2003) Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res 44:828–836

    Article  CAS  PubMed  Google Scholar 

  31. Nagao K, Zhao Y, Takahashi K, Kimura Y, Ueda K (2009) Sodium taurocholate-dependent lipid efflux by ABCA1: effects of W590S mutation on lipid translocation and apolipoprotein A-I dissociation. J Lipid Res 50:1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brooks CJ, Horning EC, Young JS (1968) Characterization of sterols by gas chromatography-mass spectrometry of the trimethylsilyl ethers. Lipids 3:391–402

    Article  CAS  PubMed  Google Scholar 

  33. Gerst N, Ruan B, Pang J, Wilson WK, Schroepfer GJ (1997) An updated look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. J Lipid Res 38:1685–1701

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Catherine C.Y. Chang at Geisel School of Medicine at Dartmouth and Dr. Sumiko Abe-Dohmae at Nagoya City University Graduate School of Medical Sciences, who participated in developing and/or optimizing some of the methods described in this chapter. The authors’ work was supported by JSPS KAKENHI grants (to Y.Y. and to S.Y.), by the CREST program from Japan Agency for Medical Research and Development, AMED (to Y.Y.), by MEXT-supported Program for the Strategic Research Foundation at Private Universities (S1201007) and by NIH grant HL060306 (to T.Y.C. and C.C.Y.C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshio Yamauchi or Ta-Yuan Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yamauchi, Y., Yokoyama, S., Chang, TY. (2017). Methods for Monitoring ABCA1-Dependent Sterol Release. In: Gelissen, I., Brown, A. (eds) Cholesterol Homeostasis. Methods in Molecular Biology, vol 1583. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6875-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6875-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6873-2

  • Online ISBN: 978-1-4939-6875-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics