Skip to main content

Assessing Mitochondrial Selective Autophagy in the Nematode Caenorhabditis elegans

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1567))

Abstract

Eukaryotic cells heavily depend on ATP generated by oxidative phosphorylation (OXPHOS) within mitochondria. Besides being the main suppliers of cell’s energy, mitochondria also provide an additional compartment for a wide range of cellular processes and metabolic pathways. Mitochondria constantly undergo fusion/fission events and form a mitochondrial network, which is a highly dynamic, tubular structure allowing for rapid and continuous exchange of genetic material, as well as, targeting dysfunctional mitochondria for degradation through mitochondrial selective autophagy (mitophagy). Mitophagy mediates the elimination of damaged and/or superfluous organelles, maintaining mitochondrial and cellular homeostasis. In this chapter, we present two versatile, noninvasive methods, developed for monitoring in vivo mitophagy in C. elegans. These procedures enable the assessment of mitophagy in several cell types during development or under stress conditions. Investigating the role of mitophagy at the organismal level is essential for the development of therapeutic interventions against age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

DMSO:

Dimethyl sulfoxide

DsRed:

Red fluorescent protein

FUdR:

Fluorodeoxyuridine

GFP:

Green fluorescent protein

MAP1LC3/LC3:

Microtubule-associated protein 1 light chain 3

mtGFP:

Mitochondria-targeted green fluorescent protein

mtRosella:

Mitochondria-targeted Rosella

NGM:

Nematode growth medium

References

  1. Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491(7424):374–383. doi:10.1038/nature11707

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. doi:10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B, Legouis R (2014) The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 28(1):43–55. doi:10.1016/j.devcel.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  4. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521(7553):525–528. doi:10.1038/nature14300

    Article  CAS  PubMed  Google Scholar 

  5. Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188. doi:10.1016/j.exger.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  6. Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, Cecconi F, Tavernarakis N, Ventura N (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 25(14):1810–1822. doi:10.1016/j.cub.2015.05.059

    Article  CAS  PubMed  Google Scholar 

  7. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM III, Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25(3):158–170. doi:10.1016/j.tcb.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  8. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273. doi:10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. doi:10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  10. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160. doi:10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  11. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191(5):933–942. doi:10.1083/jcb.201008084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamano K, Youle RJ (2013) PINK1 is degraded through the N-end rule pathway. Autophagy 9(11):1758–1769. doi:10.4161/auto.24633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20(9):1726–1737. doi:10.1093/hmg/ddr048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870. doi:10.1093/hmg/ddq419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286(22):19630–19640. doi:10.1074/jbc.M110.209338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosado CJ, Mijaljica D, Hatzinisiriou I, Prescott M, Devenish RJ (2008) Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy 4(2):205–213

    Article  CAS  PubMed  Google Scholar 

  17. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  18. Frankowski H, Alavez S, Spilman P, Mark KA, Nelson JD, Mollahan P, Rao RV, Chen SF, Lithgow GJ, Ellerby HM (2013) Dimethyl sulfoxide and dimethyl formamide increase lifespan of C. elegans in liquid. Mech Ageing Dev 134(3–4):69–78. doi:10.1016/j.mad.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Wang X, Li L, Wang D (2010) Lifespan extension in Caenorhabditis elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem Biophys Res Commun 400(4):613–618. doi:10.1016/j.bbrc.2010.08.113

    Article  CAS  PubMed  Google Scholar 

  20. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108(25):10190–10195. doi:10.1073/pnas.1107402108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695. doi:10.1016/j.cell.2011.07.030

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Pasparaki for expert technical support. We thank R. Devenish for providing the pAS1NB-CS-Rosella plasmid. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Center for Research Resources (NCRR) of the National Institutes of Health (NIH). We thank A. Fire for plasmid vectors. This work was funded by grants from the European Research Council (ERC) and the European Commission 7th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Tavernarakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Palikaras, K., Tavernarakis, N. (2017). Assessing Mitochondrial Selective Autophagy in the Nematode Caenorhabditis elegans . In: Mokranjac, D., Perocchi, F. (eds) Mitochondria. Methods in Molecular Biology, vol 1567. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6824-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6824-4_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6822-0

  • Online ISBN: 978-1-4939-6824-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics