Skip to main content

Isolation, Characterization, and Expansion of Cancer Stem Cells

  • Protocol
  • First Online:
Adult Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1553))

Abstract

The ability to isolate, characterize, and expand distinct tumor cell populations from primary tissue or xenografts is vital to identifying molecular mechanisms specific to cancer stem cells. Once cells have been extracted from tissue, there are multiple methods by which they can be sorted and cultured. We will describe the approaches that can be taken from cancer stem cell isolation through expansion, including Magnetic-activated Cell Sorting (MACS), Fluorescence-activated Cell Sorting (FACS), the use of reporter systems, and various cell culture methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Makino S (1959) The role of tumor stem-cells in regrowth of the tumor following drastic applications. Acta Unio Int Contra Cancrum 15(Suppl 1):196–198

    PubMed  Google Scholar 

  2. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988. doi:10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. doi:10.1038/nature05372

    Article  PubMed  Google Scholar 

  5. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115. doi:10.1038/nature05384 nature05384 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951 Doi: 65/23/10946 [pii] 1158/0008-5472.CAN-05-2018

    Article  CAS  PubMed  Google Scholar 

  7. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708. doi:10.1038/sj.onc.1209327 1209327 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021. doi:10.1158/0008–5472.CAN-04-1364 64/19/7011 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206. doi:10.1002/glia.10094

    Article  PubMed  Google Scholar 

  10. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    CAS  PubMed  Google Scholar 

  11. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. doi:10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  12. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10(6):717–728. doi:10.1016/j.stem.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. doi:10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN (2015) Cancer stem cells in glioblastoma. Genes Dev 29(12):1203–1217. doi:10.1101/gad.261982.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greve B, Kelsch R, Spaniol K, Eich HT, Gotte M (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81(4):284–293. doi:10.1002/cyto.a.22022

    Article  PubMed  Google Scholar 

  17. Thiagarajan PS, Hitomi M, Hale JS, Alvarado AG, Otvos B, Sinyuk M, Stoltz K, Wiechert A, Mulkearns-Hubert E, Jarrar AM, Zheng Q, Thomas D, Egelhoff TT, Rich JN, Liu H, Lathia JD, Reizes O (2015) Development of a fluorescent reporter system to delineate cancer stem cells in triple-negative breast cancer. Stem Cells 33(7):2114–2125. doi:10.1002/stem.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang B, Raviv A, Esposito D, Flanders KC, Daniel C, Nghiem BT, Garfield S, Lim L, Mannan P, Robles AI, Smith WI Jr, Zimmerberg J, Ravin R, Wakefield LM (2015) A flexible reporter system for direct observation and isolation of cancer stem cells. Stem Cell Reports 4(1):155–169. doi:10.1016/j.stemcr.2014.11.002

    Article  PubMed  Google Scholar 

  19. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403 doi:S1535-6108(06)00117-6[pii] 1016/j.ccr.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  20. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  21. Hasselbach LA, Irtenkauf SM, Lemke NW, Nelson KK, Berezovsky AD, Carlton ET, Transou AD, Mikkelsen T, deCarvalho AC (2014) Optimization of high grade glioma cell culture from surgical specimens for use in clinically relevant animal models and 3D immunochemistry. J Vis Exp 83:e51088. doi:10.3791/51088

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Lathia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Torre-Healy, L.A., Berezovsky, A., Lathia, J.D. (2017). Isolation, Characterization, and Expansion of Cancer Stem Cells. In: Di Nardo, P., Dhingra, S., Singla, D. (eds) Adult Stem Cells. Methods in Molecular Biology, vol 1553. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6756-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6756-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6754-4

  • Online ISBN: 978-1-4939-6756-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics