Skip to main content

Growing Adipose-Derived Stem Cells Under Serum-Free Conditions

  • Protocol
  • First Online:
Oral Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1537))

Abstract

Growing adipose-derived stem cells (ADSC) in serum-free conditions is important as it represents a way of expanding multipotent cells in a clinical grade medium. Most cultured ADSC are expanded and tested in serum-containing media, which can pose significant health risks if these cells were used in clinical applications. Moreover, cells grown in serum-free conditions behave significantly different than those cultured in serum-containing media. Here, we present a technique to culture adipose-derived stem cells in serum-free conditions. The methods described in this chapter were optimized for ovine ADSC. The appropriate optimization should be done for other cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi:10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  3. Roberts SJ, Owen HC, Tam WL, Solie L, Van Cromphaut SJ, Van den Berghe G, Luyten FP (2014) Humanized culture of periosteal progenitors in allogeneic serum enhances osteogenic differentiation and in vivo bone formation. Stem Cells Transl Med 3:218–228. doi:10.5966/sctm.2012-0137

    Article  CAS  PubMed  Google Scholar 

  4. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630. doi:10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155. doi:10.1016/S0140-6736(04)16627-0

    Article  CAS  PubMed  Google Scholar 

  6. Jin SH, Lee JE, Yun JH, Kim I, Ko Y, Park JB (2014) Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J Periodont Res 50:461–467. doi:10.1111/jre.12228

    Article  PubMed  Google Scholar 

  7. Raynaud CM, Rafii A (2013) The necessity of a systematic approach for the use of MSCs in the clinical setting. Stem Cells Int 2013:892340. doi:10.1155/2013/892340

    Article  PubMed  PubMed Central  Google Scholar 

  8. Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, Boucher S, Vemuri MC, Silva CL, Cabral JM (2011) Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods 17:1201–1210. doi:10.1089/ten.tec.2011.0255

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Han ZB, Song YP, Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012:652034. doi:10.1155/2012/652034

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brunner D, Frank J, Appl H, Schoffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture: the serum-free media interactive online database. Altex 27:53–62

    Article  PubMed  Google Scholar 

  11. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23:1357–1366. doi:10.1634/stemcells.2005-0094

    Article  CAS  PubMed  Google Scholar 

  12. International SS (2014) Heat inactivation of fetal bovine serum (FBS). Serum Source Int. http://www.serumsourceintl.com/pdf/heat_inactivation.pdf. Accessed 10 Aug 2014

  13. Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579. doi:10.1016/j.biomaterials.2010.01.085

    Article  CAS  PubMed  Google Scholar 

  14. Griesche N, Luttmann W, Luttmann A, Stammermann T, Geiger H, Baer PC (2010) A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells. Cells Tissues Organs 192:106–115. doi:10.1159/000289586

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support provided by grants from the New Zealand Lottery Board (Lottery Health Research Grant) and the Otago Medical Research Foundation (Jack Thompson Arthritis Grant), and a University of Otago Doctoral Scholarship (awarded to D.G.Z.) are gratefully acknowledged. We also thank the Molecular Biosciences Laboratory (Faculty of Dentistry) personnel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn E. Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zanicotti, D.G., Coates, D.E. (2017). Growing Adipose-Derived Stem Cells Under Serum-Free Conditions. In: Seymour, G., Cullinan, M., Heng, N. (eds) Oral Biology. Methods in Molecular Biology, vol 1537. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6685-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6685-1_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6683-7

  • Online ISBN: 978-1-4939-6685-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics