Skip to main content

Successful Engraftment of Human Hepatocytes in uPA-SCID and FRG® KO Mice

  • Protocol
  • First Online:
Hepatocyte Transplantation

Abstract

Mice with humanized chimeric liver are promising in vivo tools to evaluate the efficacy of novel compounds or vaccine induced antibodies directed against pathogens that infect the human liver. In addition they can be used to study the human-type metabolism of medicinal compounds and hepatotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meuleman P, Leroux-Roels G (2009) HCV animal models: a journey of more than 30 years. Viruses 1(2):222–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaushansky A et al (2014) Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections. Cell Microbiol 16(5):602–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vercauteren K, de Jong YP, Meuleman P (2014) HCV animal models and liver disease. J Hepatol 61(1 Suppl):S26–S33

    Article  CAS  PubMed  Google Scholar 

  4. Vercauteren K, de Jong YP, Meuleman P (2015) Animal models for the study of HCV. Curr Opin Virol 13:67–74

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ilan E et al (2002) The hepatitis C virus (HCV)-Trimera mouse: a model for evaluation of agents against HCV. J Infect Dis 185(2):153–161

    Article  CAS  PubMed  Google Scholar 

  6. Sacci J et al (1992) Mouse model for exoerythrocytic stages of Plasmodium falciparum malaria parasite. Proc Natl Acad Sci U S A 89(c367803a-3dd6-2e72-629f-7a83840a4fc2):3701–3706

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ohashi K et al (2000) Sustained survival of human hepatocytes in mice: a model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat Med 6(3):327–331

    Article  CAS  PubMed  Google Scholar 

  8. Heckel JL et al (1990) Neonatal bleeding in transgenic mice expressing urokinase-type plasminogen activator. Cell 62(3):447–456

    Article  CAS  PubMed  Google Scholar 

  9. Rhim JA et al (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science 263(5150):1149–1152

    Article  CAS  PubMed  Google Scholar 

  10. Meuleman P, Vanlandschoot P, Leroux-Roels G (2003) A simple and rapid method to determine the zygosity of uPA-transgenic SCID mice. Biochem Biophys Res Commun 308(2):375–378

    Article  CAS  PubMed  Google Scholar 

  11. Meuleman P et al (2005) Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera. Hepatology 41(4):847–856

    Article  CAS  PubMed  Google Scholar 

  12. Grompe M et al (1993) Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev 7(12A):2298–2307

    Article  CAS  PubMed  Google Scholar 

  13. Azuma H et al (2007) Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat Biotechnol 25(8):903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bissig KD et al (2007) Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 104(51):20507–20511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hasegawa M et al (2011) The reconstituted “humanized liver” in TK-NOG mice is mature and functional. Biochem Biophys Res Commun 405(3):405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Washburn ML et al (2011) A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140(4):1334–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson EM et al (2014) Extensive double humanization of both liver and hematopoiesis in FRGN mice. Stem Cell Res 13(3PA):404–412

    Article  CAS  PubMed  Google Scholar 

  18. Vanwolleghem T et al (2010) Factors determining successful engraftment of hepatocytes and susceptibility to hepatitis B and C virus infection in uPA-SCID mice. J Hepatol 53(3):468–476

    Article  PubMed  Google Scholar 

  19. Kawahara T et al (2010) Factors affecting hepatocyte isolation, engraftment, and replication in an in vivo model. Liver Transpl 16(8):974–982

    Article  PubMed  Google Scholar 

  20. Rhim JA et al (1995) Complete reconstitution of mouse liver with xenogeneic hepatocytes. Proc Natl Acad Sci U S A 92(11):4942–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petersen J et al (1998) Liver repopulation with xenogenic hepatocytes in B and T cell-deficient mice leads to chronic hepadnavirus infection and clonal growth of hepatocellular carcinoma. Proc Natl Acad Sci U S A 95(1):310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dandri M et al (2001) Woodchuck hepatocytes remain permissive for hepadnavirus infection and mouse liver repopulation after cryopreservation. Hepatology 34(4 Pt 1):824–833

    Article  CAS  PubMed  Google Scholar 

  23. Dandri M, Petersen J (2012) Chimeric mouse model of hepatitis B virus infection. J Hepatol 56(2):493–495

    Article  PubMed  Google Scholar 

  24. Mercer DF et al (2001) Hepatitis C virus replication in mice with chimeric human livers. Nat Med 7(8):927–933

    Article  CAS  PubMed  Google Scholar 

  25. Mars WM, Zarnegar R, Michalopoulos GK (1993) Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 143(3):949–958

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chapman HA, Reilly JJ Jr, Kobzik L (1988) Role of plasminogen activator in degradation of extracellular matrix protein by live human alveolar macrophages. Am Rev Respir Dis 137(2):412–419

    Article  CAS  PubMed  Google Scholar 

  27. Tateno C et al (2004) Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 165(1fb9c63d-0fa7-8bd3-eba4-7a81d8a986dc):901–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meuleman P et al (2006) Immune suppression uncovers endogenous cytopathic effects of the hepatitis B virus. J Virol 80(6):2797–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lutgehetmann M et al (2012) Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation. Hepatology 55(3):685–694

    Article  CAS  PubMed  Google Scholar 

  30. Nakagawa S et al (2013) Targeted induction of interferon-lambda in humanized chimeric mouse liver abrogates hepatotropic virus infection. PLoS One 8(3), e59611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kneteman NM et al (2006) Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology 43(6):1346–1353

    Article  CAS  PubMed  Google Scholar 

  32. Vanwolleghem T et al (2007) Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology 133(4):1144–1155

    Article  CAS  PubMed  Google Scholar 

  33. Vanwolleghem T et al (2008) Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human liver-chimeric mice from infection with a homologous hepatitis C virus strain. Hepatology 47(6): 1846–1855

    Article  CAS  PubMed  Google Scholar 

  34. Joyce MA et al (2009) HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 5(2), e1000291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walters KA et al (2006) Application of functional genomics to the chimeric mouse model of HCV infection: optimization of microarray protocols and genomics analysis. Virol J 3:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meuleman P et al (2012) A Human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. Hepatology 55(2):364–372

    Article  CAS  PubMed  Google Scholar 

  37. Vercauteren K et al (2014) Successful anti-SR-BI mAb therapy in humanized mice after challenge with HCV variants with in vitro resistance to SR-BI-targeting agents. Hepatology 60(5):1508–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sacci JB Jr et al (2006) Plasmodium falciparum infection and exoerythrocytic development in mice with chimeric human livers. Int J Parasitol 36(3):353–360

    Article  CAS  PubMed  Google Scholar 

  39. Morosan S et al (2006) Liver-stage development of Plasmodium falciparum, in a humanized mouse model. J Infect Dis 193(7):996–1004

    Article  CAS  PubMed  Google Scholar 

  40. Foquet L et al (2013) Molecular detection and quantification of Plasmodium falciparum-infected human hepatocytes in chimeric immune-deficient mice. Malar J 12(1):430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foquet L et al (2014) Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. J Clin Invest 124(1):140–144

    Article  CAS  PubMed  Google Scholar 

  42. Behet MC et al (2014) Sporozoite immunization of human volunteers under chemoprophylaxis induces functional antibodies against pre-erythrocytic stages of Plasmodium falciparum. Malar J 13:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Schaijk BCL et al (2014) A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. eLife 3:e03582

    Google Scholar 

  44. Lootens L et al (2009) uPA(+/+)-SCID mouse with humanized liver as a model for in vivo metabolism of exogenous steroids: methandienone as a case study. Clin Chem 55(10):1783–1793

    Article  CAS  PubMed  Google Scholar 

  45. Lootens L et al (2011) Metabolic studies with promagnon, methylclostebol and methasterone in the uPA(+/+)-SCID chimeric mice. J Steroid Biochem Mol Biol 127(3-5):374–381

    Article  CAS  PubMed  Google Scholar 

  46. Okumura H et al (2007) Humanization of excretory pathway in chimeric mice with humanized liver. Toxicol Sci 97(2):533–538

    Article  CAS  PubMed  Google Scholar 

  47. Katoh M et al (2007) In vivo drug metabolism model for human cytochrome P450 enzyme using chimeric mice with humanized liver. J Pharm Sci 96(2):428–437

    Article  CAS  PubMed  Google Scholar 

  48. Pozo OJ et al (2009) Detection and characterization of a new metabolite of 17alpha-methyltestosterone. Drug Metab Dispos 37(11):2153–2162

    Article  CAS  PubMed  Google Scholar 

  49. VanBuskirk KM et al (2009) Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc Natl Acad Sci U S A 106(31):13004–13009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mikolajczak SA et al (2011) Disruption of the Plasmodium falciparum liver stage antigen-1 locus causes a differentiation defect in late liver stage parasites. Cell Microbiol 13(8):1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vaughan AM et al (2012) Development of humanized mouse models to study human malaria parasite infection. Future Microbiol 7(5):657–665

    Article  PubMed  Google Scholar 

  52. Jimenez-Diaz MB et al (2009) Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rgammanull mice engrafted with human erythrocytes. Antimicrob Agents Chemother 53(10):4533–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Overturf K et al (1996) Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 12(3):266–273

    Article  CAS  PubMed  Google Scholar 

  54. Lieber A et al (1995) Adenovirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo. Proc Natl Acad Sci U S A 92(13):6210–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bissig KD et al (2010) Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 120(3):924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Jong YP, Rice CM, Ploss A (2010) A New horizons for studying human hepatotropic infections. J Clin Invest 120(3):650–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Strom SC, Davila J, Grompe M (2010) Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol 640:491–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vaughan AM et al (2012) Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest 122(10):3618–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sack BK et al (2013) A model for in vivo assessment of humoral protection against malaria sporozoite challenge by passive transfer of monoclonal antibodies and immune serum. Infect Immun. 01249-13

    Google Scholar 

  60. Tournoy KG et al (1998) Murine IL-2 receptor beta chain blockade improves human leukocyte engraftment in SCID mice. Eur J Immunol 28(10):3221–3230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Meuleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Foquet, L. et al. (2017). Successful Engraftment of Human Hepatocytes in uPA-SCID and FRG® KO Mice. In: Stock, P., Christ, B. (eds) Hepatocyte Transplantation. Methods in Molecular Biology, vol 1506. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6506-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6506-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6504-5

  • Online ISBN: 978-1-4939-6506-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics