Skip to main content

Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1471))

Abstract

Meiosis is a specialized form of cell division resulting in reproductive cells with a reduced, usually haploid, genome complement. A key step after premeiotic DNA replication is the occurrence of homologous recombination at multiple places throughout the genome, initiated with the formation of DNA double-strand breaks (DSBs) catalyzed by the topoisomerase-like protein Spo11. DSBs are distributed non-randomly in genomes, and understanding the mechanisms that shape this distribution is important for understanding how meiotic recombination influences heredity and genome evolution. Several methods exist for mapping where Spo11 acts. Of these, sequencing of Spo11-associated oligonucleotides (Spo11 oligos) is the most precise, specifying the locations of DNA breaks to the base pair. In this chapter we detail the steps involved in Spo11-oligo mapping in the SK1 strain of budding yeast Saccharomyces cerevisiae, from harvesting cells of highly synchronous meiotic cultures, through preparation of sequencing libraries, to the mapping pipeline used for processing the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Keeney S (2001) Mechanisms and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  CAS  PubMed  Google Scholar 

  2. Garcia V, Phelps SEL, Gray S et al (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair 8:983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zakharyevich K, Ma Y, Tang S et al (2010) Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol Cell 40:1001–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436(7053):1053–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buhler C, Borde V, Lichten M (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 5(12), e324

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pan J, Sasaki M, Kniewel R et al (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144:719–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5(6):413–424

    Article  CAS  PubMed  Google Scholar 

  9. Lichten M (2008) Meiotic chromatin: the substrate for recombination initiation. In: Egel R, Lankenau DH (eds) Recombination and meiosis (Genome Dyn Stab), vol 3. Springer, Heidelberg, pp 165–193

    Chapter  Google Scholar 

  10. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2(5):360–369

    Article  CAS  PubMed  Google Scholar 

  11. Thacker D, Mohibullah N, Zhu X et al (2014) Homologue engagement controls meiotic DNA break number and distribution. Nature 510(7504):241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keeney S, Lange J, Mohibullah N (2014) Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 48:187–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooper TJ, Wardell K, Garcia V et al (2014) Homeostatic regulation of meiotic DSB formation by ATM/ATR. Exp Cell Res 329:124–131

    Article  CAS  PubMed  Google Scholar 

  14. Gray S, Allison RM, Garcia V et al (2013) Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1 (ATR). Open Biol 3(7):130019

    Article  PubMed  PubMed Central  Google Scholar 

  15. Murakami H, Keeney S (2014) Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes. Cell 158(4):861–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rockmill B, Voelkel-Meiman K, Roeder GS (2006) Centromere-proximal crossovers are associated with precocious separation of sister chromatids during meiosis in Saccharomyces cerevisiae. Genetics 174:1745–1754

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lacefield S, Murray AW (2007) The spindle checkpoint rescues the meiotic segregation of chromosomes whose crossovers are far from the centromere. Nat Genet 39(10):1273–1277

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki M, Lange J, Keeney S (2010) Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 11:182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sasaki M, Tischfield SE, van Overbeek M et al (2013) Meiotic recombination initiation in and around retrotransposable elements in Saccharomyces cerevisiae. PLoS Genet 9(8), e1003732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vader G, Blitzblau HG, Tame M et al (2011) Protection of repetitive DNA borders from self-induced meiotic instability. Nature 477(7362):115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Keeney S (2015) High-resolution global analysis of the influences of Bas1 and Ino4 transcription factors on meiotic DNA break distributions in Saccharomyces cerevisiae. Genetics 201(2):525–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerton JL, DeRisi J, Shroff R et al (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97(21):11383–11390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blitzblau HG, Bell GW, Rodriguez J et al (2007) Mapping of meiotic single-stranded DNA reveals double-strand-break hotspots near centromeres and telomeres. Curr Biol 17:2003–2012

    Article  CAS  PubMed  Google Scholar 

  24. Borde V, Goldman ASH, Lichten M (2000) Direct coupling between meiotic DNA replication and recombination initiation. Science 290:806–809

    Article  CAS  PubMed  Google Scholar 

  25. Lam I, Keeney S (2015) Non-paradoxical evolutionary stability of meiotic recombination initiation in yeasts. Science 350(6263):932–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fowler KR, Sasaki M, Milman N et al (2014) Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. Genome Res 24(10):1650–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  28. Neale MJ, Keeney S (2009) End-labeling and analysis of Spo11-oligonucleotide complexes in Saccharomyces cerevisiae. Methods Mol Biol 557:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Spo11 -oligo mapping method was initially developed by Jing Pan and Mariko Sasaki with technical advice from Matthew Neale. Further optimization was done by Xuan Zhu and the authors of this chapter. Nicholas D. Socci developed the sequence mapping pipeline. We are grateful to Julian Lange, Xiaojing Mu, and Sam Tischfield for comments on the manuscript, and Hajime Murakami for suggestions when adapting the protocol to Dynabeads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Keeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lam, I., Mohibullah, N., Keeney, S. (2017). Sequencing Spo11 Oligonucleotides for Mapping Meiotic DNA Double-Strand Breaks in Yeast. In: Stuart, D. (eds) Meiosis. Methods in Molecular Biology, vol 1471. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6340-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6340-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6338-6

  • Online ISBN: 978-1-4939-6340-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics