Skip to main content

Mapping Meiotic DNA Breaks: Two Fully-Automated Pipelines to Analyze Single-Strand DNA Sequencing Data, hotSSDS and hotSSDS-extra

  • Protocol
  • First Online:
Germ Cell Development

Abstract

Molecular approaches are required to detect DNA double-strand break (DSB) events and to map and quantify them at high resolution. One of the most popular molecular methods in the field of meiotic recombination is the ChIP-SSDS (Chromatin immuno-precipitation and single-strand DNA sequencing). Here, we present two fully-automated Nextflow-based pipelines to analyze the sequencing data generated by this method. The first one identifies highly reproducible DSB sites, while the second provides a characterization of recovered DSB sites, including the description of the hotspot distribution and intensity along the genome and the overlap with specific regions such as gene features or known DSB hotspots. Finally, we discuss limitations/advantages and key points to consider when applying this method to specific genotypes or unconventional species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smagulova F, Gregoretti IV, Brick K et al (2011) Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 472:375–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirzazadeh R, Kallas T, Bienko M et al (2018) Genome-wide profiling of DNA double-strand breaks by the BLESS and BLISS methods. In: Muzi-Falconi M, Brown GW (eds) Genome instability: methods and protocols. Springer, New York, pp 167–194

    Chapter  Google Scholar 

  3. Yan WX, Mirzazadeh R, Garnerone S et al (2017) BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks. Nat Commun 8:15058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biernacka A, Skrzypczak M, Zhu Y et al (2020) High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS. Nat Protoc 16:1034

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong N, John S, Nussenzweig A et al (2021) END-seq: an unbiased, high-resolution, and genome-wide approach to map DNA double-strand breaks and resection in human cells. In: Methods in molecular biology – homologous recombination: methods and protocols

    Google Scholar 

  6. Canela A, Sridharan S, Sciascia N et al (2016) DNA breaks and end resection measured genome-wide by end sequencing. Mol Cell 63:898–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mimitou EP, Yamada S, Keeney S (2017) A global view of meiotic double-strand break end resection. Science 355:40–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lange J, Yamada S, Tischfield SE et al (2016) The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167:1–14

    Article  Google Scholar 

  9. Khil PP, Smagulova F, Brick KM et al (2012) Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res 22:957–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brick K, Pratto F, Sun CY et al (2018) Analysis of meiotic double-strand break initiation in mammals. Methods in Enzymology 601. Elsevier.

    Google Scholar 

  11. Hinch AG, Becker PW, Li T et al (2020) The configuration of RPA, RAD51, and DMC1 binding in Meiosis reveals the nature of critical recombination intermediates. Mol Cell 79:689–701.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brick K (2019) SSDSnextflowPipeline [Source code]. https://github.com/kevbrick/SSDSpipeline

  13. Brick K (2020) callSSDSpeaks [Source code]. https://github.com/kevbrick/callSSDSpeaks

  14. Di Tommaso P, Chatzou M, Floden EW et al (2017) Nextflow enables reproducible computational workflows. Nat Biotechnol 35:316–319

    Article  PubMed  Google Scholar 

  15. nextflow-io (2017) Nextflow [Source code]. https://github.com/nextflow-io/nextflow/

  16. Di Tommaso P Nextflow documentation. https://www.nextflow.io/docs/latest/index.html

  17. Conda package manager. https://anaconda.org/bioconda/nextflow

  18. Conda, https://docs.conda.io/en/latest/

  19. Mamba, https://github.com/mamba-org/mamba

  20. Docker, https://www.docker.com/

  21. Singularity, https://sylabs.io/

  22. git, https://git-scm.com/

  23. wget, https://www.gnu.org/software/wget/

  24. Nore A, Juarez-Martinez AB, Clément JAJ et al (2022) TOPOVIBL-REC114 interaction regulates meiotic DNA double-strand breaks. Nat Commun 13:1–19

    Article  Google Scholar 

  25. Davies AB, Hatton E, Altemose N et al (2016) Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530:171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papanikos F, Clément JAJ, Testa E et al (2019) Mouse ANKRD31 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between X and Y sex chromosomes. Mol Cell 74:1069–1085.e11

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Cyril Noël and Alizée Bardon (SeBiMER, Ifremer, Plouzané) for their help regarding Singularity images building. The authors acknowledge the bioinformatic service of IGH for providing computational resources for the early developments and the Pôle de Calcul et de Données Marines (PCDM; http://www.ifremer.fr/pcdm) for providing DATARMOR computational resources on which hotSSDS and hotSSDS-extra pipelines development have been completed.

We also thank Paola Sanna, Akbar Zainu, Mathilde Biot, Frédéric Baudat, Corinne Grey (de Massy team) and Miao Tian (Mochizuki team) from IGH for their feedback on the pipeline and their critical tests; Attila Toth, Arkasarathi Gope, Andreas Petzold, and Christin Richter from TU Dresden for their tests and helpful comments.

BdM was funded by ERC (European Research Council (ERC) Executive Agency under the European Union’s Horizon 2020 research and innovation program (Grant Agreement no. 883605)) and MSD Avenir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie A. J. Clément .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Auffret, P., de Massy, B., Clément, J.A.J. (2024). Mapping Meiotic DNA Breaks: Two Fully-Automated Pipelines to Analyze Single-Strand DNA Sequencing Data, hotSSDS and hotSSDS-extra. In: Barchi, M., De Felici, M. (eds) Germ Cell Development. Methods in Molecular Biology, vol 2770. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3698-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3698-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3697-8

  • Online ISBN: 978-1-0716-3698-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics