Skip to main content

Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells

  • Protocol
Cell Fusion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1313))

Abstract

The artificially induced cell fusion is a useful experimental tool in biology, biotechnology and medicine. The electrofusion is a physical method for cell fusion that applies high-voltage electric pulses. The use of electric pulses causes cell membrane structural changes which bring the cell membrane in the so-called fusogenic state. When such fusogenic membranes are in close contact cell fusion takes place. Physical contact between fusion partners can be achieved by various methods and one of them is modified adherence method (MAM) described in detail here on B16-F1 cell line. The method is based on the fact that living cells form contacts in confluent culture. However, instead of using confluent cell culture, in modified adherence method cells are plated in suitable concentration and allowed to form contacts for only short predetermined period of time. During that time the cells are only slightly attached to the dish surface maintaining the spherical shape. Observed high fusion yields up to 50 % obtained by MAM in situ by dual-color fluorescence microscopy are among the highest in field of electrofusion. The method can be readily adapted to other anchorage-dependent cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo-Parke H, McCluskey JT, Kelly C et al (2012) Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility. J Endocrinol 214:257–265. doi:10.1530/JOE-12-0188

    Article  PubMed  Google Scholar 

  2. Sretavan DW, Chang W, Hawkes E et al (2005) Microscale surgery on single axons. Neurosurgery 57:635–646, discussion 635–646

    Article  PubMed  Google Scholar 

  3. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–712. doi:10.1038/nature09229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Greggains GD, Lister LM, Tuppen HAL et al (2014) Therapeutic potential of somatic cell nuclear transfer for degenerative disease caused by mitochondrial DNA mutations. Sci Rep. doi:10.1038/srep03844

    PubMed  Google Scholar 

  5. Hirasawa R, Matoba S, Inoue K, Ogura A (2013) Somatic donor cell type correlates with embryonic, but not extra-embryonic. Gene expression in postimplantation cloned embryos. PLoS One. doi:10.1371/journal.pone.0076422

    Google Scholar 

  6. Sullivan S, Eggan K (2006) The potential of cell fusion for human therapy. Stem Cell Rev 2:341–349. doi:10.1007/BF02698061

    Article  CAS  PubMed  Google Scholar 

  7. Robinson T, Verboket PE, Eyer K, Dittrich PS (2014) Controllable electrofusion of lipid vesicles: initiation and analysis of reactions within biomimetic containers. Lab Chip. doi:10.1039/C4LC00460D

    Google Scholar 

  8. Ramos C, Teissie J (2000) Tension-voltage relationship in membrane fusion and its implication in exocytosis. FEBS Lett 465:141–144

    Article  CAS  PubMed  Google Scholar 

  9. Tomita M, Tsumoto K (2011) Hybridoma technologies for antibody production. Immunotherapy 3:371–380. doi:10.2217/imt.11.4

    Article  CAS  PubMed  Google Scholar 

  10. Strioga MM, Felzmann T, Powell DJ Jr et al (2013) Therapeutic dendritic cell-based cancer vaccines: the state of the art. Crit Rev Immunol 33:489–547

    Article  CAS  PubMed  Google Scholar 

  11. Teissie J, Knutson VP, Tsong TY, Lane MD (1982) Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science 216:537–538

    Article  CAS  PubMed  Google Scholar 

  12. Usaj M, Trontelj K, Miklavcic D, Kanduser M (2010) Cell-cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese Hamster ovary (CHO) cells. J Membr Biol 236:107–116. doi:10.1007/s00232-010-9272-3

    Article  CAS  PubMed  Google Scholar 

  13. Usaj M, Kanduser M (2012) The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer. J Membr Biol 245:583–590. doi:10.1007/s00232-012-9470-2

    Article  CAS  PubMed  Google Scholar 

  14. Hui SW, Stenger DA (1993) Electrofusion of cells: hybridoma production by electrofusion and polyethylene glycol. Methods Enzymol 220:212–227

    Article  CAS  PubMed  Google Scholar 

  15. Salomskaite-Davalgiene S, Cepurniene K, Satkauskas S et al (2009) Extent of cell electrofusion in vitro and in vivo is cell line dependent. Anticancer Res 29:3125–3130

    PubMed  Google Scholar 

  16. Salvi A, Quillan J, Sadée W (2002) Monitoring intracellular pH changes in response to osmotic stress and membrane transport activity using 5-chloromethylfluorescein. AAPS J 4:21–28

    Google Scholar 

  17. Sukhorukov VL, Reuss R, Endter JM et al (2006) A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 346:829–839. doi:10.1016/j.bbrc.2006.05.193

    Article  CAS  PubMed  Google Scholar 

  18. Usaj M, Trontelj K, Hudej R et al (2009) Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization. Radiol Oncol 43:108–119

    Article  Google Scholar 

  19. Vienken J, Zimmermann U (1985) An improved electrofusion technique for production of mouse hybridoma cells. FEBS Lett 182:278–280

    Article  CAS  PubMed  Google Scholar 

  20. Mazères S, Sel D, Golzio M et al (2009) Non invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release 134:125–131. doi:10.1016/j.jconrel.2008.11.003

    Article  PubMed  Google Scholar 

  21. Usaj M, Flisar K, Miklavcic D, Kanduser M (2013) Electrofusion of B16-F1 and CHO cells: the comparison of the pulse first and contact first protocols. Bioelectrochemistry 89:34–41. doi:10.1016/j.bioelechem.2012.09.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Infrastructure Program: Network of research infrastructure centers at University of Ljubljana (2009–2014) IP-0510 and Research program P2-0249, founded by Slovenian Research Agency (ARRS), Slovenia. Research was conducted in the scope of the LEA EBAM European Associated Laboratory (LEA). We would like to thank D. Miklavčič, the head of Laboratory of Biocybernetrics, for his general support and M. Simčič from Laboratory of Modeling, Simulation and Control, Faculty of Electrical Engineering, University of Ljubljana for the photo of the multiwell plate in the Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maša Kandušer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ušaj, M., Kandušer, M. (2015). Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells. In: Pfannkuche, K. (eds) Cell Fusion. Methods in Molecular Biology, vol 1313. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2703-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2703-6_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2702-9

  • Online ISBN: 978-1-4939-2703-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics