Skip to main content

Methods to Study Primary Tumor Cells and Residual Tumor Cells in Mouse Models of Oncogene Dependence

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

  • 7376 Accesses

Abstract

The studies of oncogene dependence are aimed to understand an unfortunate and puzzling aspect of targeted anticancer treatments—their progression to drug resistance. Drug resistance develops from a pool of cells that survive the original treatment, called minimal residual disease. Mouse models based on tetracycline-dependent expression of transgenic oncogenes are used to imitate targeted oncogene blockade and to reproduce minimal residual disease in humans. Here we describe a novel method for generating oncogene-dependent mammary tumors using somatic transfer of transactivator-containing retroviruses into transgenic mice with tetracycline-dependent oncogenes and a method for measuring continuous mitotic activity in epithelial cells in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martin GS (1970) Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227(5262):1021–1023

    Article  CAS  PubMed  Google Scholar 

  2. Weinstein IB (2002) Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297(5578):63–64. doi:10.1126/science.1073096

    Article  CAS  PubMed  Google Scholar 

  3. Varmus H (2006) The new era in cancer research. Science 312(5777):1162–1165. doi:10.1126/science.1126758

    Article  CAS  PubMed  Google Scholar 

  4. Wiedswang G, Borgen E, Karesen R, Qvist H, Janbu J, Kvalheim G, Nesland JM, Naume B (2004) Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res 10(16):5342–5348. doi:10.1158/1078-0432.CCR-04-0245

    Article  PubMed  Google Scholar 

  5. Janni W, Rack B, Schindlbeck C, Strobl B, Rjosk D, Braun S, Sommer H, Pantel K, Gerber B, Friese K (2005) The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer 103(5):884–891. doi:10.1002/cncr.20834

    Article  PubMed  Google Scholar 

  6. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R (2014) Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A 111(7):2548–2553. doi:10.1073/pnas.1324297111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL, Arber DA, Slovak ML, Forman SJ (2003) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101(12):4701–4707. doi:10.1182/blood-2002-09-2780

    Article  CAS  PubMed  Google Scholar 

  8. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner JW, Cordon-Cardo C, Yancopoulos GD, DePinho RA (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400(6743):468–472. doi:10.1038/22788

    Article  CAS  PubMed  Google Scholar 

  9. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4(2):199–207. doi:10.1016/S1097-2765(00)80367-6

    Article  CAS  PubMed  Google Scholar 

  10. Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 15(24):3249–3262. doi:10.1101/Gad.947701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH, Moody SE, Chodosh LA, Arteaga CL (2004) Conditional overexpression of active transforming growth factor beta 1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64(24):9002–9011. doi:10.1158/0008-5472.Can-04-2111

    Article  CAS  PubMed  Google Scholar 

  12. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE (2006) Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev 20(11):1496–1510. doi:10.1101/Gad.1417406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Du YCN, Klimstra DS, Varmus H (2009) Activation of PyMT in beta cells induces irreversible hyperplasia, but oncogene-dependent acinar cell carcinomas when activated in pancreatic progenitors. Plos One 4(9). doi:10.1371/Journal.Pone.0006932. Artn E6932

  14. Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD, Innocent N, Cardiff RD, Schnall MD, Chodosh LA (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2(6):451–461. doi:10.1016/S1535-6108(02)00212-X

    Article  CAS  PubMed  Google Scholar 

  15. Podsypanina K, Politi K, Beverly LJ, Varmus HE (2008) Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci U S A 105(13):5242–5247. doi:10.1073/pnas.0801197105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Debies MT, Gest SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, Chodosh LA, Cardiff RD, Gunther EJ (2008) Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19(Arf)/p53 pathway lesions but not p16(Ink4a) loss. J Clin Invest 118(1):51–63. doi:10.1172/Jci33320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gestl SA, Leonard TL, Biddle JL, Debies MT, Gunther EJ (2007) Dormant Wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Mol Cell Biol 27(1):195–207. doi:10.1128/Mcb. 01525-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA (2005) The transcriptional repressor snail promotes mammary tumor recurrence. Cancer Cell 8(3):197–209. doi:10.1016/j.ccr.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  19. Choi PS, van Riggelen J, Gentles AJ, Bachireddy P, Rakhra K, Adam SJ, Plevritis SK, Felsher DW (2011) Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction. Proc Natl Acad Sci U S A 108(42):17432–17437. doi:10.1073/pnas.1107303108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Anders K, Buschow C, Herrmann A, Milojkovic A, Loddenkemper C, Kammertoens T, Daniel P, Yu H, Charo J, Blankenstein T (2011) Oncogene-targeting T Cells reject large tumors while oncogene inactivation selects escape variants in mouse models of cancer. Cancer Cell 20(6):755–767. doi:10.1016/j.ccr.2011.10.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2(2):117–125. doi:10.1016/S1535-6108(02)00096-X

    Article  CAS  PubMed  Google Scholar 

  22. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. Plos Med 2(3):225–235. doi:10.1371/journal.pmed.0020073. ARTN e73

  23. Rubin BP, Duensing A (2006) Mechanisms of resistance to small molecule kinase inhibition in the treatment of solid tumors. Lab Invest 86(10):981–986. doi:10.1038/labinvest.3700466

    Article  CAS  PubMed  Google Scholar 

  24. D'Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE, Cox JD, Ha SI, Belka GK, Golant A, Cardiff RD, Chodosh LA (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7(2):235–239. doi:10.1038/84691

    Article  PubMed  Google Scholar 

  25. Kabeer F, Beverly LJ, Darrasse-Jèze G, Podsypanina K (2014) Methods to study metastasis in genetically modified mice. In: Politi K, Abate-Chen C, Chodosh LA, Olive K (eds) Methods to study cancer in genetically modified mice. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Chapter 19

    Google Scholar 

  26. Beverly LJ, Varmus HE (2009) MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 28(9):1274–1279. doi:10.1038/Onc.2008.466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Krause S, Brock A, Ingber DE (2013) Intraductal injection for localized drug delivery to the mouse mammary gland. J Vis Exp: JoVE (80). doi:10.3791/50692

  28. Barham W, Sherrill T, Connelly L, Blackwell TS, Yull FE (2012) Intraductal injection of LPS as a mouse model of mastitis: signaling visualized via an NF-kappaB reporter transgenic. J Vis Exp 67:e4030. doi:10.3791/4030

    PubMed  Google Scholar 

  29. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, Young E, Mukhopadhyay P, Yeh HW, Allred DC, Hu M, Polyak K, Rosen JM, Medina D (2009) An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res 11(5). doi:10.1186/Bcr2358. Artn R66

  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  31. Tough DF, Sprent J (1994) Turnover of naive-phenotype and memory-phenotype T-cells. J Exp Med 179(4):1127–1135. doi:10.1084/jem.179.4.1127

    Article  CAS  PubMed  Google Scholar 

  32. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow-cytometry. J Immunol Methods 171(1):131–137. doi:10.1016/0022-1759(94)90236-4

    Article  CAS  PubMed  Google Scholar 

  33. Parish CR, Glidden MH, Quah BJ, Warren HS (2009) Use of the intracellular fluorescent dye CFSE to monitor lymphocyte migration and proliferation. Curr Protoc Immunol, John E Coligan et al. (ed) Chapter 4:Unit4 9. doi:10.1002/0471142735.im0409s84

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina Podsypanina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Botta, C., Darini, C., Darrasse-Jèze, G., Podsypanina, K. (2015). Methods to Study Primary Tumor Cells and Residual Tumor Cells in Mouse Models of Oncogene Dependence. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics