Skip to main content

The Watermaze

  • Protocol
  • First Online:
The Maze Book

Part of the book series: Neuromethods ((NM,volume 94))

Abstract

This chapter chronicles the personal account of the development and refinement of the spatial navigation task, now known as the watermaze. The watermaze began at the Gatty Marine Laboratory at St Andrews, once famous for its work on the neurobiology of various marine animals, in the laboratory of Richard Morris. In the late 1970s, walking past tanks of various sea creatures every day to his new laboratory, Morris pondered whether a “maze” in which rats had to swim could be a useful way to examine spatial memory and to investigate the functional significance of recently discovered hippocampal place cells. And, low and behold, the watermaze was born. In this chapter, Morris highlights and discusses the step-by-step laboratory setup, apparatus, different training protocols, critical control procedures, and optimal data analysis procedures for the watermaze. His key message is that the watermaze is not just one task, but a family of procedures suited to diverse scientific questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bach ME, Hawkins RD, Osman M, Kandel ER, Mayford M (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81(6):905–915

    Article  CAS  PubMed  Google Scholar 

  2. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioural study in the rat. J Comp Physiol Psychol 93:74–104

    Article  CAS  PubMed  Google Scholar 

  3. Barnes CA, Mc Naughton BL (1985) An age comparison of the rates of acquisition and forgetting of spatial information in relation to long-term enhancement of hippocampal synapses. Behav Neurosci 99:1040–1048

    Article  CAS  PubMed  Google Scholar 

  4. Bimonte HA, Nelson ME, Granholm AC (2003) Age-related deficits as working memory load increases: relationships with growth factors. Neurobiol Aging 24(1):37–48

    Article  CAS  PubMed  Google Scholar 

  5. Bolhuis JJ, Stewart CA, Forrest EM (1994) Retrograde amnesia and memory reactivation in rats with ibotenate lesions to the hippocampus or subiculum. Q J Exp Psychol B 47(2):129–150

    CAS  PubMed  Google Scholar 

  6. Brandeis R, Brandys R, Yehuda S (1989) The use of the Morris Water Maze in the study of memory and learning. Int J Neurosci 48:29–69

    Article  CAS  PubMed  Google Scholar 

  7. Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser M-B, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    Article  CAS  PubMed  Google Scholar 

  8. Brun VH, Ytterbo K, Morris RGM, Moser MB, Moser EI (2001) Retrograde amnesia for spatial memory induced by NMDA receptor-mediated long-term potentiation. J Neurosci 21(1):356–362

    CAS  PubMed  Google Scholar 

  9. Castro CA, Silbert LH, McNaughton BL, Barnes CA (1989) Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature 342(6249):545–548

    Article  CAS  PubMed  Google Scholar 

  10. Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, Justice A, McConlogue L, Games D, Freedman SB, Morris RGM (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408(6815):975–979

    Article  CAS  PubMed  Google Scholar 

  11. Clark RE, Broadbent NJ, Squire LR (2005) Hippocampus and remote spatial memory in rats. Hippocampus 15(2):260–272

    Article  PubMed Central  PubMed  Google Scholar 

  12. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  13. Doeller CF, Burgess N (2008) Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc Natl Acad Sci U S A 105(15):5909–5914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci U S A 105(15):5915–5920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Eichenbaum H, Stewart C, Morris RGM (1990) Hippocampal representation in place learning. J Neurosci 10(11):3531–3542

    CAS  PubMed  Google Scholar 

  16. Frey U, Morris RGM (1997) Synaptic tagging and long-term potentiation. Nature 385(6616):533–536

    Article  CAS  PubMed  Google Scholar 

  17. Gaffan D (1974) Recognition impaired and association intact in the memory of monkeys after transection of the fornix. J Comp Physiol Psychol 86(6):1100–1109

    Article  CAS  PubMed  Google Scholar 

  18. Gallagher M, Rapp PR (1997) The use of animal models to study the effects of aging on cognition. Annu Rev Psychol 48:339–370

    Article  CAS  PubMed  Google Scholar 

  19. Garthe A, Kempermann G (2013) An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis. Front Neurosci 7:63

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hagan JJ, Alpert JE, Morris RG, Iversen SD (1983) The effects of central catecholamine depletions on spatial learning in rats. Behav Brain Res 9(1):83–104

    Article  CAS  PubMed  Google Scholar 

  21. Horridge GA (1968) Interneurons. W.H. Freeman, San Francisco

    Google Scholar 

  22. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    Article  CAS  PubMed  Google Scholar 

  23. Inglis J, Martin SJ, Morris RGM (2013) Upstairs-downstairs revisited: spatial pretraining-induced rescue of normal spatial learning during selective blockade of hippocampal N-methyl-D-aspartate receptors. Eur J Neurosci 37(5):718–727

    Article  PubMed  Google Scholar 

  24. Kolb B, Buhrmann K, McDonald R, Sutherland RJ (1994) Dissociation of the medial prefrontal, posterior parietal, and posterior temporal cortex for spatial navigation and recognition memory in the rat. Cereb Cortex 4(6):664–680

    Article  CAS  PubMed  Google Scholar 

  25. Krichmar JL, Seth AK, Nitz DA, Fleischer JG, Edelman GM (2005) Spatial navigation and causal analysis in a brain based device modeling cortical-hippocampal interactions. Neuroinformatics 5:197–222

    Article  Google Scholar 

  26. Lipp HP, Wolfer DP (1998) Genetically modified mice and cognition. Curr Opin Neurobiol 8(2):272–280

    Article  CAS  PubMed  Google Scholar 

  27. Martin SJ, de Hoz L, Morris RGM (2005) Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychologia 43(4):609–624

    Article  PubMed  Google Scholar 

  28. Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  29. Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  CAS  PubMed  Google Scholar 

  30. Morgan DG, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy JD, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon MN, Arendash GW (2000) Abeta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 482:982–986

    Article  Google Scholar 

  31. Morris RGM, Davis S, Butcher SP (1990) Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 329(1253):187–204

    Article  CAS  PubMed  Google Scholar 

  32. Morris RGM, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  33. Morris RGM, Hagan JJ, Rawlins JN (1986) Allocentric spatial learning by hippocampectomised rats: a further test of the “spatial mapping” and “working memory” theories of hippocampal function. Q J Exp Psychol B 38(4):365–395

    CAS  PubMed  Google Scholar 

  34. Morris RGM (1981) Spatial localisation does not depend on the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  35. Morris RGM (1984) Developments of a watermaze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  36. Morris RGM (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9(9):3040–3057

    CAS  PubMed  Google Scholar 

  37. Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319(6056):774–776

    Article  CAS  PubMed  Google Scholar 

  38. Morris RGM, Schenk F, Tweedie F, Jarrard LE (1990) Ibotenate lesions of hippocampal and/or subiculum: dissociating components of allocentric learning. Eur J Neurosci 2:1016–1028

    Article  PubMed  Google Scholar 

  39. Moser MB, Moser EI, Forrest E, Andersen P, Morris RGM (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci U S A 92(21):9697–9701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S (2003) Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38(2):305–315

    Article  CAS  PubMed  Google Scholar 

  42. Nunn JA, LePeillet E, Netto CA, Hodges H, Gray JA, Meldrum BS (1994) Global ischaemia: hippocampal pathology and spatial deficits in the water maze. Behav Brain Res 62(1):41–54

    Article  CAS  PubMed  Google Scholar 

  43. O'Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RG (2006) Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn Mem 13(6):760–769

    Article  PubMed Central  PubMed  Google Scholar 

  44. O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109

    Article  PubMed  Google Scholar 

  45. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford

    Google Scholar 

  46. Olton DS (1979) Mazes, maps, and memory. Am Psychol 34(7):583–596

    Article  CAS  PubMed  Google Scholar 

  47. Pearce JM (2009) The 36th Sir Frederick Bartlett Lecture: an associative analysis of spatial learning. Q J Exp Psychol 62:1665–1684

    Article  Google Scholar 

  48. Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40(16):2201–2209

    Article  CAS  PubMed  Google Scholar 

  49. Prusky GT, West PW, Douglas RM (2000) Reduced visual acuity impairs place but not cued learning in the Morris water task. Behav Brain Res 116(2):135–140

    Article  CAS  PubMed  Google Scholar 

  50. Riedel G, Micheau J, Lam AG, Roloff E, Martin SJ, Bridge H, Hoz L, Poeschel B, McCulloch J, Morris RGM (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2(10):898–905

    Article  CAS  PubMed  Google Scholar 

  51. Sandi C, Loscertales M, Guaza C (1997) Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. Eur J Neurosci 9:637–642

    Article  CAS  PubMed  Google Scholar 

  52. Spooner RI, Thomson A, Hall J, Morris RGM, Salter SH (1994) The Atlantis platform: a new design and further developments of Buresova’s on-demand platform for the water maze. Learn Mem 1(3):203–211

    CAS  PubMed  Google Scholar 

  53. Steele RJ, Morris RGM (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9(2):118–136

    Article  CAS  PubMed  Google Scholar 

  54. Sutherland RJ, Dyck RH (1984) Place navigation by rats in a swimming pool. Can J Psychol 38:322–347

    Article  Google Scholar 

  55. Sutherland RJ, Whishaw IQ, Kolb B (1983) A behavioral analysis of spatial localization following electrolytic, kainate-or colchicine-induced damage to the hippocampal formation in the rat. Behav Brain Res 7:133–153

    Article  CAS  PubMed  Google Scholar 

  56. Terry AV (2009) Spatial navigation (Watermaze) tasks. In: Buccafusco JJ (ed) Methods of behaviour analysis in neuroscience, Frontiers in neuroscience. CRC Press, Boca Raton, FL

    Google Scholar 

  57. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie XS, Longo FM, Wyss-Coray T (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. doi:10.1038/nm.3569

    PubMed Central  PubMed  Google Scholar 

  58. Wang SH, Redondo RL, Morris RGM (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci U S A 107(45):19537–19542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Whishaw IQ (1987) Hippocampal, granule cell and CA3-4 lesions impair formation of a place learning-set in the rat and induce reflex epilepsy. Behav Brain Res 24:59–72

    Article  CAS  PubMed  Google Scholar 

  60. Wolfer DP, Madani R, Valenti P (2001) Extended analysis of path data from mutant mice using the pubic domain software Wintrack. Physiol Behav 73:745–753

    Article  CAS  PubMed  Google Scholar 

  61. Wolfer DP, Stagljar-Bozicevic M, Errington ML, Lipp H-P (1998) Spatial memory and learning in transgenic mice: fact or artifact? News Physiol Sci 13:118–123

    PubMed  Google Scholar 

Download references

Acknowledgements

This chapter describes the apparatus and wide range of protocols and data-analysis options for the watermaze. I am grateful to the many assistants, graduate students, postdocs, and visitors to my laboratory whose comments have helped to develop the watermaze to its present level of sophistication, and to many other groups elsewhere who have introduced new ideas and made valuable discoveries using this technique. I am indebted to the UK Medical Research Council who supported my research through Programme Grants over 25 years. This manuscript was supported by an Advanced Investigator Grant (26880) from the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. M. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Morris, R.G.M. (2015). The Watermaze. In: Bimonte-Nelson, H. (eds) The Maze Book. Neuromethods, vol 94. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2159-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2159-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2158-4

  • Online ISBN: 978-1-4939-2159-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics