Skip to main content

Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes

  • Protocol
  • First Online:
Microbial Biofilms

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1147))

Abstract

Actinobacteria, cyanobacteria, algae, and fungi form subaerial biofilm (SAB) that can lead to material deterioration on artistic stone and frescoes. In studying SAB on cultural heritage surfaces, a general approach is to combine microscopy observations and molecular analyses. Sampling of biofilm is performed using specific adhesive tape and sampling of SAB and the substrate with sterile scalpels and chisels. Biofilm observations are carried out using optical and scanning electron microscopy. Specific taxa and EPS in biofilm can be readily visualized by fluorochrome staining and subsequent observation using fluorescence or confocal laser scanning microscopy. The observation of cross sections containing both SAB and the substrate shows if biofilm has developed not only on the surface but also underneath. Following nucleic acid extraction, 16S rRNA gene sequencing is used to identify bacterial taxa, while 18S rRNA gene and internal transcribed spacer (ITS) sequence analysis is used to study eukaryotic groups. In this chapter, we illustrate the protocols related to fluorescence in situ hybridization (FISH), scanning electron microscopy (SEM), and denaturing gradient gel electrophoresis (DGGE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ICOMOS International Scientific Committee for Stone (ISCS) (2008) ICOMOS-ISCS Illustrated glossary on stone deterioration patterns. Ateliers 30 Impression, Champigny/Marne, France

    Google Scholar 

  2. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  CAS  PubMed  Google Scholar 

  3. Urzì C, De Leo F (2001) Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. J Microbiol Methods 44:1–11

    Article  PubMed  Google Scholar 

  4. Polo A, Cappitelli F, Brusetti L et al (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60:1–14

    Article  CAS  PubMed  Google Scholar 

  5. Polo A, Gulotta D, Santo N et al (2012) Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study. Biofouling 28:1093–1106

    Article  PubMed  Google Scholar 

  6. Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63: 3327–3332

    CAS  PubMed Central  PubMed  Google Scholar 

  7. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  8. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  9. Urzi C (2008) Fluorescent in-situ hybridization (FISH) as molecular tool to study bacteria causing biodeterioration. In: May E, Jones M, Mitchell J (eds) Heritage microbiology and science: microbes, monuments and maritime materials. Royal Society of Chemistry, Cambridge, pp 143–150

    Google Scholar 

  10. Amann RI, Binder BJ, Olson RJ et al (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Cappitelli F, Principi P, Pedrazzani R et al (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385: 172–181

    Article  CAS  PubMed  Google Scholar 

  12. Müller E, Drewello U, Drewello R et al (2001) In situ analysis of biofilms on historic window glass using confocal laser scanning microscopy. J Cult Herit 2:31–42

    Article  Google Scholar 

  13. Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons Ltd, Chichester, pp 205–248

    Google Scholar 

  14. Piñar G, Gurtner C, Ramos C et al (2002) Identification of Archaea in deteriorated ancient wall paintings by DGGE and FISH analysis. In: Galan E, Zezza F (eds) Protection and conservation of the cultural heritage of the Mediterranean cities. Balkema, Lisse

    Google Scholar 

  15. Manz W, Amann R, Ludwig W et al (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15: 593–600

    Article  Google Scholar 

  16. Roller C, Wagner M, Amann R et al (1994) In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849–2858

    Article  CAS  PubMed  Google Scholar 

  17. Urzi C, La Cono V, Stackebrandt E (2004) Design and application of two oligonucleotide probes for the identification of Geodermatophilaceae strains using fluorescence in situ hybridization (FISH). Environ Microbiol 6: 78–685

    Google Scholar 

  18. Schönhuber W, Zarda B, Eix S et al (1999) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 65:1259–1267

    PubMed Central  PubMed  Google Scholar 

  19. Pawley JB (1995) Handbook of biological confocal microscopy, 2nd edn. Springer, New York, pp 453–467

    Book  Google Scholar 

  20. Pawley D, Flinchbaugh J (2006) The current state: progress starts here. Manuf Eng 137:71

    Google Scholar 

  21. Gulotta D, Goidanich S, Bertoldi M et al (2012) Gildings and false gildings of the baroque age: characterization and conservation problems. Archaeometry 54:940–954

    Article  CAS  Google Scholar 

  22. Cappitelli F, Toniolo L, Sansonetti A et al (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 17:5671–5675

    Article  Google Scholar 

  23. Cappitelli F, Salvadori O, Albanese D et al (2012) Cyanobacteria cause black staining of the national museum of the American Indian building (Washington, D.C., USA). Biofouling 28:257–266

    Article  CAS  PubMed  Google Scholar 

  24. Urzì C, La Cono V, De Leo F, Donato P (2003) Fluorescent in situ hybridization (FISH) to study biodeterioration. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Balkema Publishers, Lisse, pp 55–60

    Google Scholar 

  25. de Vos MM, Nelis HJ (2003) Detection of Aspergillus fumigatus hyphae by solid phase cytometry. J Microbiol Methods 55:557–564

    Article  PubMed  Google Scholar 

  26. Teertstra WR, Lugones LG, Wosten HAB (2004) In situ hybridization in filamentous fungi using peptide nucleic acid probes. Fungal Genet Biol 41:1099–1103

    Article  CAS  PubMed  Google Scholar 

  27. Prigione V, Marchisio VF (2004) Methods to maximise the staining of fungal propagules with fluorescent dyes. J Microbiol Methods 59:371–379

    Article  CAS  PubMed  Google Scholar 

  28. Villa F, Cappitelli F, Principi P et al (2009) Permeabilization method for in-situ investigation of fungal conidia on surfaces. Lett Appl Microbiol 48:234–240

    Article  CAS  PubMed  Google Scholar 

  29. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  30. Loy A, Maixner F, Wagner M, Horn M (2007) ProbeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35: D800–D804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  33. Cutler NA, Oliver AE, Viles HA et al (2013) The characterisation of eukaryotic microbial communities on sandstone buildings in Belfast, UK, using TRFLP and 454 pyrosequencing. Int Biodeterior Biodegr 82:124–133

    Article  CAS  Google Scholar 

  34. Giacomucci L, Bertoncello R, Salvadori O et al (2011) Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62:287–298

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cappitelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cappitelli, F., Villa, F., Polo, A. (2014). Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes. In: Donelli, G. (eds) Microbial Biofilms. Methods in Molecular Biology, vol 1147. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0467-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0467-9_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0466-2

  • Online ISBN: 978-1-4939-0467-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics