Skip to main content

Chromatin Conformation Capture-Based Analysis of Nuclear Architecture

  • Protocol
  • First Online:
Plant Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1456))

Abstract

Nuclear organization and higher-order chromosome structure in interphase nuclei are thought to have important effects on fundamental biological processes, including chromosome condensation, replication, and transcription. Until recently, however, nuclear organization could only be analyzed microscopically. The development of chromatin conformation capture (3C)-based techniques now allows a detailed look at chromosomal architecture from the level of individual loci to the entire genome. Here we provide a robust Hi-C protocol, allowing the analysis of nuclear organization in nuclei from different wild-type and mutant plant tissues. This method is quantitative and provides a highly efficient and comprehensive way to study chromatin organization during plant development, in response to different environmental stimuli, and in mutants disrupting a variety of processes, including epigenetic pathways regulating gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  2. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  CAS  PubMed  Google Scholar 

  3. Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    Article  CAS  PubMed  Google Scholar 

  4. Dostie J, Richmond TA, Arnaout RA et al (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lieberman-Aiden E, Van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693

    Article  CAS  PubMed  Google Scholar 

  7. Schmid MW, Grob S, Grossniklaus U (2015) HiCdat: a fast and easy-to-use Hi-C data analysis tool. BMC Bioinformatics 16:277

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sexton T, Yaffe E, Kenigsberg E et al (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472

    Article  CAS  PubMed  Google Scholar 

  9. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moissiard G, Cokus SJ, Cary J et al (2012) MORC family ATPases required for heterochromatin condensation and gene silencing. Science 336:1448–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng S, Cokus SJ, Schubert V et al (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55:694–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang C, Liu C, Roqueiro D et al (2014) Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res 25:246–256

    Article  PubMed  Google Scholar 

  13. Louwers M, Splinter E, Van Driel R et al (2009) Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C). Nat Protoc 4:1216–1229

    Article  CAS  PubMed  Google Scholar 

  14. Green MR, Sambrook J (2012) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Grob or Ueli Grossniklaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grob, S., Grossniklaus, U. (2017). Chromatin Conformation Capture-Based Analysis of Nuclear Architecture. In: Kovalchuk, I. (eds) Plant Epigenetics. Methods in Molecular Biology, vol 1456. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7708-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7708-3_2

  • Published:

  • Publisher Name: Humana Press, Boston, MA

  • Print ISBN: 978-1-4899-7706-9

  • Online ISBN: 978-1-4899-7708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics