Skip to main content

Hyperammonemia as an Adverse Effect in Parenteral Nutrition

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

Nutritional support is an essential element in the aggregate care of the chronic disease and/or critical patient. Many a times, the patients’ nutritional status has been a major predictor for the outcome and prognosis of diseases. Since 1967, assisted nutrition, mainly as total parenteral nutrition (TPN) to provide the necessary calories from carbohydrates, proteins, and lipids and also to furnish selected minerals, electrolytes, and essential vitamins, has been administered intravenously through a central venous catheter to the extremely sick patients who cannot obtain their required nutrition through enteral route. The advantage of parenteral nutrition is that it can be customized for individual requirement, though a standard solution could still be used. Though studies have clearly proven the superiority of the assisted nutrition in the betterment of the outcome of these patients, TPN is certainly associated with adverse effects and complications. Of all the complications associated with TPN, we will focus on hyperammonemia which could be a complication related to the type and quantity of the amino acids present in the TPN (Ghadimi et al. Pediatrics 48:955–965; 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

ASPEN:

American Society for Parenteral and Enteral Nutrition

AST:

Aspartate aminotransferase

BCAT:

Branched-chain aminotransferase

EAA:

Essential amino acids

EDTA:

Ethylenediaminetetraacetic acid

fMRI:

Functional magnetic resonance imaging

GI:

Gastrointestinal

HE:

Hepatic encephalopathy

IEM:

Inborn errors of metabolism

LBW:

Low birth weight

OTC:

Ornithine transcarbamoylase (ornithine carbamoyltransferase)

PCT:

Proximal convoluted tubule

PN:

Parenteral nutrition

RRT:

Renal replacement therapy

TPN:

Total parenteral nutrition

UCD:

Urea cycle disorders

References

  • Aoyagi T, Engstrom GW, Evans WB, et al. Gastrointestinal urease in man. I. Activity of mucosal urease. Gut. 1966;7(6):631–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arn PH, Hauser ER, Thomas GH, et al. Hyperammonemia in women with a mutation at the ornithine carbamoyltransferase locus. A cause of postpartum coma. N Engl J Med. 1990;322(23):1652–5.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann C. Mechanisms of hyperammonemia. Clin Chem Lab Med. 2002;40:653–62.

    Article  CAS  PubMed  Google Scholar 

  • Batshaw ML, Bursilow SW. Asymptomatic hyperammonemia in low birthweight infants. Pediatr Res. 1978;12(3):221–4.

    Article  CAS  PubMed  Google Scholar 

  • Bergstorm J, Furst P, Josephson B, et al. Improvement in nitrogen balance in a uremic patient by the addition of histidine to essential amino acid solutions given intravenously. Life Sci. 1970;9:787–94.

    Article  Google Scholar 

  • Bollschweiler E, Schroder W, Holscher AH, et al. Preoperative risk analysis in patients with adenocarcinoma or squamous cell carcinoma of the oesophagus. Br J Surg. 2000;87(8):1106–10.

    Article  CAS  PubMed  Google Scholar 

  • Braga M, Gianotti L, Gentilini O, et al. Early postoperative enteral nutrition improves gut oxygenation and reduces costs compared with total parenteral nutrition. Crit Care Med. 2001;29:242–8.

    Article  CAS  PubMed  Google Scholar 

  • Buckle RM. Wernicke’s encephalopathy: studies on blood pyruvic acid and alpha-ketoglutaric acids. Acta Neurol Scand. 1967;43(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  • Crenn P, Messing B, Cynober L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin Nutr. 2008;27(3):328–39.

    Article  CAS  PubMed  Google Scholar 

  • De Jonghe B, Janier V, Abderrahim N, et al. Urinary tract infection and coma. Lancet. 2002;360(9338):996.

    Article  PubMed  Google Scholar 

  • Diaz GA, Krivitzky LS, Mokhtarani M, et al. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate. Hepatology. 2012;57:2171–9.

    Article  Google Scholar 

  • Ganda OP, Ruderman NB. Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism. 1976;25(4):427–35.

    Article  CAS  PubMed  Google Scholar 

  • Ghadimi H, Abaci F, Kumar S, et al. Biochemical aspects of intravenous alimentation. Pediatrics. 1971;48:955–65.

    CAS  PubMed  Google Scholar 

  • Gropman AL, Gertz B, Shattuck K, et al. Diffusion tensor imaging detects areas of abnormal white matter microstructure in patients with partial ornithine transcarbamoylase deficiency. Am J Neuroradiol. 2010;31:1719–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gullino P, Winitz M, Birnbaum SM, et al. Studies on the metabolism of amino acids and related compounds in vivo. I. Toxicity of essential amino acids, individually and in mixtures, and the protective effect of l-arginine. Arch Biochem Biophys. 1956;64(2):319–32.

    Article  CAS  PubMed  Google Scholar 

  • Heird WC, Nicholson JF, Driscoll JM, et al. Hyperammonemia resulting from intravenous alimentation using a mixture of synthetic l-amino acids: a preliminary report. J Pediatr. 1972;81:162–5.

    Article  CAS  PubMed  Google Scholar 

  • Hornchen H, Neubrand W. Amino acids for parenteral nutrition in premature and newborn infants. Use of a mother’s milk-adapted solution. JPEN J Parenter Enteral Nutr. 1980;4(3):294–9.

    Article  CAS  PubMed  Google Scholar 

  • http://pen.sagepub.com/content/early/2009/01/27/0148607108330314.full.pdf+html

  • http://pen.sagepub.com/content/early/2014/02/13/0148607114521833.full.pdf+html

  • Iwami K, Wang JY, Jain R, et al. Intestinal ornithine decarboxylase: half-life and regulation by putrescine. Am J Physiol. 1990;258(2 Pt 1):G308–15.

    CAS  PubMed  Google Scholar 

  • Johnson JD, Albritton WL, Sunshine P. Hyperammonemia accompanying parenteral nutrition in newborn infants. J Pediatr. 1972;81:154–61.

    Article  CAS  PubMed  Google Scholar 

  • Kapila S, Saba M, Lin CH, et al. Arginine deficiency-induced hyperammonemia in a home total parenteral nutrition-dependent patient: a case report. JPEN J Parenter Enteral Nutr. 2001;25(5):286–8.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Tanaka H, Kokuba Y, et al. Amino acid supplementation to hyperalimentation in uremic rats. Effects of amount and composition of amino acids on nutrition and uremia. Ren Fail. 1994;16(2):209–20.

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Lai HS, Huang SM, et al. Hyperammonemic encephalopathy due to essential amino acid hyperalimentation. J Formos Med Assoc. 1994;93(6):486–91.

    CAS  PubMed  Google Scholar 

  • Lichter-Konecki U. Profiling of astrocyte properties in the hyperammonaemic brain: shedding new light on the pathophysiology of the brain damage in hyperammonaemia. J Inherit Metab Dis. 2008;31(4):492–502.

    Article  CAS  PubMed  Google Scholar 

  • Lien J, Nyhan WL, Barshop BA. Fatal initial adult-onset presentation of urea cycle defect. Arch Neurol. 2007;64(12):1777–9.

    Article  PubMed  Google Scholar 

  • Machado MCC, Pinheiro da Silva F. Hyperammonemia due to urea cycle disorders: a potentially fatal condition in the intensive care setting. J Intens Care. 2014;2:22. http://www.jintensivecare.com/content/2/1/22.

    Article  Google Scholar 

  • Maillot F, Crenn P. Urea cycle disorders in adult patients. Rev Neurol. 2007;163(10):897–903.

    Article  CAS  PubMed  Google Scholar 

  • Nakasaki H, Katayama T, Yokoyama S, et al. Complication of parenteral nutrition composed of essential amino acids and histidine in adults with renal failure. JPEN J Parenter Enteral Nutr. 1993;17(1):86–90.

    Article  CAS  PubMed  Google Scholar 

  • Olde Damink SW, Dejong CH, Deutz NE, et al. Upper gastro intestinal bleeding: an ammoniagenic and catabolic event due to the total absence of isoleucine in the hemoglobin molecule. Med Hypotheses. 1999;52:515–9.

    Article  CAS  PubMed  Google Scholar 

  • Ong JP, Aggarwall A, Krieger D, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114:185–98.

    Article  Google Scholar 

  • Osowska S, Moinard C, Neveux N, et al. Citrulline increases arginine pools and restores nitrogen balance after massive intestinal resection. Gut. 2004;53(12):1781–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Owen EE, Robinson RR. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest. 1963;42:263–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padillo FJ, Andicoberry B, Muntane J, et al. Factors predicting nutritional derangements in patients with obstructive jaundice: multivariate analysis. World J Surg. 2001;25:413–8.

    Article  CAS  PubMed  Google Scholar 

  • Panteliadis C, Jurgens P, Dolif D. Amino acid requirements of premature and newborn infants under conditions of parenteral feeding. Infusionsther Klin Ernahr. 1975;2(1):65–72.

    CAS  PubMed  Google Scholar 

  • Raiha NC, Suihkonen J. Development of urea-synthesizing enzymes in human liver. Acta Paediatr Scand. 1968;57(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  • Rudman D, Galambos JT, Smith RB, et al. Comparison of effect of various amino acids upon the blood ammonia concentration of patients with the liver disease. Am J Clin Nutr. 1973;26:916–25.

    CAS  PubMed  Google Scholar 

  • Saheki T, Tsuda M, Tanaka T, et al. Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. II. Comparison of urea synthesis in livers of rats subjected to different dietary conditions. J Biochem. 1975;77(3):671–8.

    CAS  PubMed  Google Scholar 

  • Sato S, Yokota C, Toyoda K, et al. Hyperammonemic encephalopathy caused by urinary tract infection with urinary retention. Eur J Intern Med. 2008;19(8):e78–9.

    Article  PubMed  Google Scholar 

  • Seashore JH, Seashore MR, Riely C. Hyperammonemia during total parenteral nutrition in children. JPEN J Parenter Enteral Nutr. 1982;6(2):114–8.

    Article  CAS  PubMed  Google Scholar 

  • Short EM, Conn HO, Snodgrass PJ, et al. Evidence for x-linked dominant inheritance of ornithine transcarbamylase deficiency. N Engl J Med. 1973;288(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  • Sinniah D, Fulton TT, McCullough H. The effect of exercise on the venous blood ammonium concentration in man. J Clin Pathol. 1970;23(8):715–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snodgrass PJ. Biochemical aspects of urea cycle disorders. Pediatrics. 1981;68(2):273–83, 295–7.

    CAS  PubMed  Google Scholar 

  • Steiner RD, Cederbaum SD. Laboratory evaluation of urea cycle disorders. J Pediatr. 2001;138:S21–9.

    Article  CAS  PubMed  Google Scholar 

  • Thomas DW, Sinatra FR, Hack FL, et al. Hyperammonemia in neonates receiving intravenous nutrition. JPEN J Parenter Enteral Nutr. 1982;6(6):503–6.

    Article  CAS  PubMed  Google Scholar 

  • Tizianello A, De Ferrari G, Garibotto G, et al. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980;65(5):1162–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torosian MH. Perioperative nutrition support for patients undergoing gastrointestinal surgery: critical analysis and recommendations. World J Surg. 1999;23:565–9.

    Article  CAS  PubMed  Google Scholar 

  • Tuchman M, Lichtenstein GR, Rajagopal BS, et al. Hepatic glutamine synthetase deficiency in fatal hyperammonemia after lung transplantation. Ann Intern Med. 1997;127(6):446–9.

    Article  CAS  PubMed  Google Scholar 

  • Van de Poll MC, Wigmore SJ, Redhead DN, et al. Effect of major liver resection on hepatic ureagenesis in humans. Am J Physiol Gastrointest Liver Physiol. 2007;293(5):G956–62.

    Article  PubMed  Google Scholar 

  • Van de Poll MC, Ligthart-Melis GC, Olde Damink SW, et al. The gut does not contribute to systemic ammonia release in humans without portosystemic shunting. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G760–5.

    Article  PubMed  Google Scholar 

  • Vince A, Dawson AM, Park N, et al. Ammonia production by intestinal bacteria. Gut. 1973;14:171–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wakabayashi Y, Iwashima A, Yamada E, et al. Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. II. N-acetylglutamate synthase. Arch Biochem Biophys. 1991;291(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Ogura Y, Kawabata M, et al. Hyperammonemia in a patient with short bowel syndrome and chronic renal failure. Nephron. 1996;72(4):693–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unnikrishnan Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Devasahayam, J.V.M. et al. (2014). Hyperammonemia as an Adverse Effect in Parenteral Nutrition. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_159-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_159-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics