Skip to main content

Plant Influences on Atmospheric Chemistry

  • Living reference work entry
  • First Online:
Ecology and the Environment

Abstract

Vegetation emits large amounts of volatile organic compounds (VOCs) to the atmosphere. Plants emit a large suite of biogenic VOCs, and the most prevalent compound emitted from vegetation is isoprene, a non-saturated hydrocarbon with five carbon atoms. The specific compounds and the respective quantities emitted are dependent on the type of vegetation and the environmental conditions. Once emitted, not all biogenic emissions escape the canopy and are released into the atmosphere; therefore, an understanding of the canopy chemical and physical processes is key to the determination of atmospheric concentrations of these compounds. Once in the atmosphere, biogenic VOCs can react and play an important role in air quality, atmospheric chemistry, and climate via reactions that impact atmospheric pollutants, radicals, and greenhouse gases. For example, biogenic VOCs can contribute to the chemistry that forms tropospheric ozone, a pollutant that harms human health and plants. This chapter presents an overview of atmospheric biogenic emissions of VOCs, from their release at the plant level to their transport and release from a canopy, to regional and global chemical and climate impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arya SP. Introduction to micrometeorology. San Diego: Academic; 2001. 420 pp.

    Google Scholar 

  • Carlton AG, Pinder RW, Bhave PV, Pouliot GA. To what extent can biogenic SOA be controlled? Environ Sci Technol. 2010;44(9):3376–80.

    Article  CAS  PubMed  Google Scholar 

  • Chameides WL, Lindsay RW, Richardson J, Kiang CS. The role of biogenic hydrocarbons in urban photochemical smog – Atlanta as a case-study. Science. 1988;241(4872):1473–5. doi:10.1126/science.3420404.

    Article  CAS  PubMed  Google Scholar 

  • CLRTAP. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Convention on Long-Range Transboundary Air Pollution (CLRTAP). 2004. Available on-line from http://www.icp-mapping.org

  • CLRTAP. Manual of methodologies for modelling and mapping effects of air pollution. Convention on Long-Range Transboundary Air Pollution (CLRTAP). 2010. Available on-line from http://icpvegetation.ceh.ac.uk

  • Dlugi R, Berger M, Zelger M, Hofzumahaus A, Siese M, Holland F, Wisthaler A, Grabmer W, Hansel A, Woppmann R, Kramm G, Mollmann-Coers M, Knaps A. Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest. Atmos Chem Phys. 2010;10(13):6215–35. doi:10.5194/acp-10-6215-2010.

    Article  CAS  Google Scholar 

  • EC. Directive 2002/3/EC – relating to ozone in ambient air. Brussels: Commission of the European Communities; 2002. Available on-line from http://ec.europa.eu/environment/air/legis.htm

  • Finnigan J. Turbulence in plant canopies. Annu Rev Fluid Mech. 2000;32:519–71. doi:10.1146/annurev.fluid.32.1.519.

    Article  Google Scholar 

  • Foken T. Micrometeorology. Berlin: Springer; 2008. 328 pp.

    Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. Changes in atmospheric constituents and in radiative forcing. In climate change 2007: the physical science basis. In: Solomon SD et al., editors. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  • Fuentes JD, Lerdau M, Atkinson R, Baldocchi D, Bottenheim JW, Ciccioli P, Lamb B, Geron C, Gu L, Guenther A, Sharkey TD, Stockwell W. Biogenic hydrocarbons in the atmospheric boundary layer: a review. Bull Am Meteorol Soc. 2000;81(7):1537–75. doi:10.1175/1520-0477(2000)081<1537:bhitab>2.3.co;2.

    Article  Google Scholar 

  • Guenther AB, Monson RK, Fall R. Isoprene and monoterpene emission rate variability – observations with Eucalyptus and emission rate algorithm development. J Geophys Res Atmos. 1991;96(D6):10799–808. doi:10.1029/91jd00960.

    Article  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev. 2012;5(6):1471–92. doi:10.5194/gmd-5-1471-2012.

    Article  Google Scholar 

  • Haagen-Smit AJ. The air pollution problem in Los Angeles. Eng Sci. 1950;14(3):7–13.

    Google Scholar 

  • Haagen-Smit AJ. Chemistry and physiology of Los Angeles smog. Ind Eng Chem Res. 1952;44:1342–6.

    Article  CAS  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prevot ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys. 2009;9(14):5155–236.

    Article  CAS  Google Scholar 

  • Penner JE, Hegg D, Leaitch R. Unraveling the role of aerosols in climate change. Environ Sci Technol. 2001;35(15):332A–40. doi:10.1021/es0124414.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen R. Isoprene: identified as a forest-type emissions to the atmosphere. Environ Sci Technol. 1970;4:667–71.

    Article  Google Scholar 

  • Rasmussen R. What do hydrocarbons from trees contribute to air pollution? J Air Pollut Control Assoc. 1972;22(7):537–43.

    Article  CAS  PubMed  Google Scholar 

  • Royal Society. Ground-level ozone in the 21st century: future trends, impacts and policy implications. Fowler D, editor. Science policy report 15/08. London: The Royal Society; 2008.

    Google Scholar 

  • Seinfeld JH, Pandis SN. Atmospheric chemistry and physics – from air pollution to climate change. 2nd ed. Wiley, New York; 2006.

    Google Scholar 

  • Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: why and how. Ann Bot. 2008;101(1):5–18. doi:10.1093/aob/mcm240.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sillman S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ. 1999;33(12):1821–45. doi:10.1016/s1352-2310(98)00345-8.

    Article  CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature. 2007;448(7155):791–4. doi:10.1038/nature06059.

    Article  CAS  PubMed  Google Scholar 

  • Spracklen DV, Jimenez JL, Carslaw KS, Worsnop DR, Evans MJ, Mann GW, Zhang Q, Canagaratna MR, Allan J, Coe H, McFiggans G, Rap A, Forster P. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos Chem Phys. 2011;11(23):12109–36. doi:10.5194/acp-11-12109-2011.

    Article  CAS  Google Scholar 

  • Stroud C, Makar P, Karl T, Guenther A, Geron C, Turnipseed A, Nemitz E, Baker B, Potosnak M, Fuentes JD. Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: results from the CELTIC field study. J Geophys Res Atmos. 2005; 110(D17). doi:10.1029/2005jd005775

    Google Scholar 

  • VanReken TM, Ng NL, Flagan RC, Seinfeld JH. Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. J Geophys Res Atmos. 2005;110(D7):D07206.

    Article  Google Scholar 

  • Warneck P. Chemistry of the natural atmosphere. 2nd ed. San Diego: Academic; 2000.

    Google Scholar 

  • Warneck P, Williams J. The atmospheric chemist’s companion. New York: Springer; 2012. doi:10.1007/978-94-007-2275-0. 436 pp.

    Book  Google Scholar 

  • Went FW. Blue hazes in the atmosphere. Nature. 1960;187(4738):641–3.

    Article  Google Scholar 

  • WHO. Air quality guidelines – global update 2005. Geneva: World Health Organisation; 2005.

    Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Wiedinmyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Wiedinmyer, C., Steiner, A., Ashworth, K. (2013). Plant Influences on Atmospheric Chemistry. In: Monson, R. (eds) Ecology and the Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7612-2_7-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7612-2_7-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7612-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics