Skip to main content

Pricing Strategies of Remanufacturing Business with Replacement Purchase

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

A special feature of remanufacturing business is the existence of large proportion of replacement customers. This is due to the fact that many durable product markets are highly saturated and customers who return their end-of-life products need to do replacement purchase. At the same time, pricing strategies have been widely adopted by remanufacturing companies to balance supply and demand. In this study, the joint decision of acquisition, trade-in, and selling price is considered. The objective is to maximize the expected profit. It is shown that a remanufacturing firm should offer higher rebates to replacement customers when this customer segment has high return quality and high price sensitivity. The optimal pricing policies under uncertain return yield rate are studied. The profitability of different pricing schemes is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Atasu A, Sarvary M, Van Wassenhove LN (2008) Remanufacturing as a marketing strategy. Manage Sci 54:1731–1746. doi:10.1287/mnsc.1080.0893

    Article  Google Scholar 

  • Bakal IS, Akcali E (2006) Effects of random yield in remanufacturing with price-sensitive supply and demand. Prod Oper Manage 15:407–420. doi:10.1111/j.1937-5956.2006.tb00254.x

    Article  Google Scholar 

  • Bayus BL (1991) The consumer durable replacement buyer. J Market 55:42–51

    Article  Google Scholar 

  • Bollapragada S, Morton TE (1999) Myopic heuristics for the random yield problem. Oper Res 47:713–722. doi:10.1287/opre.47.5.713

    Article  MATH  Google Scholar 

  • Debo LG, Toktay LB, Wassenhove LNV (2006) Joint life-cycle dynamics of new and remanufactured products. Prod Oper Manage 15:498–513. doi:10.1111/j.1937-5956.2006.tb00159.x

    Article  Google Scholar 

  • Ferrer G (2003) Yield information and supplier responsiveness in remanufacturing operations. Eur J Oper Res 149:540–556. doi:10.1016/S0377-2217(02)00454-X

    Article  MATH  MathSciNet  Google Scholar 

  • Fleischmann M, Bloemhof-Ruwaard JM, Dekker R, van der Laan E, van Nunen JA, Wassenhove LNV (1997) Quantitative models for reverse logistics: a review. Eur J Oper Res 103:1–17. doi:10.1016/S0377-2217(97)00230-0

    Article  MATH  Google Scholar 

  • Guide VDR, Jayaraman V (2000) Product acquisition management: current industry practice and a proposed framework. Int J Prod Res 38:3779–3800. doi:10.1080/00207540050176003

    Article  MATH  Google Scholar 

  • Guide VDR, Van Wassenhove LN (2003) Business aspects of closed-loop supply chains. Carnegie Mellon University Press, Pittsburgh

    Google Scholar 

  • Guide VDR, Van Wassenhove LN (2009) Or forum-the evolution of closed-loop supply chain research. Oper Res 57:10–18. doi:10.1287/opre.1080.0628

    Article  MATH  Google Scholar 

  • Guide VDR, Teunter RH, Van Wassenhove LN (2003) Matching demand and supply to maximize profits from remanufacturing. Manufactur Serv Oper Manage 5:303–316. doi:10.1287/msom.5.4.303.24883

    Article  Google Scholar 

  • Hsu A, Bassok Y (1999) Random yield and random demand in a production system with downward substitution. Oper Res 47:277–290. doi:10.1287/opre.47.2.277

    Article  MATH  MathSciNet  Google Scholar 

  • Inderfurth K, Transchel S (2007) Technical note note on “myopic heuristics for the random yield problem”. Oper Res 55:1183–1186. doi:10.1287/opre.1070.0420

    Article  MATH  Google Scholar 

  • Li Q, Zheng S (2006) Joint inventory replenishment and pricing control for systems with uncertain yield and demand. Oper Res 54:696–705. doi:10.1287/opre.1060.0273

    Article  MATH  Google Scholar 

  • Lo ST, Wee HM, Huang WC (2007) An integrated production-inventory model with imperfect production processes and weibull distribution deterioration under inflation. Int J Prod Econ 106:248–260. doi:10.1016/j.ijpe.2006.06.009

    Article  Google Scholar 

  • Lund RT, Hauser WM (2010) Remanufacturing - an American perspective. In: 5th international conference on responsive manufacturing - green manufacturing (ICRM 2010), Ningbo, pp 1–6

    Google Scholar 

  • Mukhopadhyay SK, Ma H (2009) Joint procurement and production decisions in remanufacturing under quality and demand uncertainty. Int J Prod Econ 120:5–17. doi:10.1016/j.ijpe.2008.07.032

    Article  Google Scholar 

  • Novemsky N, Kahneman D (2005) The boundaries of loss aversion. J Market Res 42:119–128. doi:10.1509/jmkr.42.2.119.62292

    Article  Google Scholar 

  • Ray S, Boyaci T, Aras N (2005) Optimal prices and trade-in rebates for durable, remanufacturable products. Manufactur Serv Oper Manage 7:208–228. doi:10.1287/msom.1050.0080

    Article  Google Scholar 

  • Savaskan RC, Bhattacharya S, Van Wassenhove LN (2004) Closed-loop supply chain models with product remanufacturing. Manage Sci 50:239–252. doi:10.1287/mnsc.1030. 0186

    Article  MATH  Google Scholar 

  • Souza GC (2008) Closed-loop supply chains with remanufacturing. INFORMS, Hanover, MD

    Google Scholar 

  • Tang O, Musa SN, Li J (2012) Dynamic pricing in the newsvendor problem with yield risks. Int J Prod Econ 139:127–134. doi:10.1016/j.ijpe.2011.01.018

    Article  Google Scholar 

  • Wee H, Yu J, Chen M (2007) Optimal inventory model for items with imperfect quality and shortage backordering. Omega 35:7–11. doi:10.1016/j.omega.2005.01.019

    Article  Google Scholar 

  • Winer RS (1997) Discounting and its impact on durables buying decisions. Market Lett 8:109–118

    Article  Google Scholar 

  • Yano CA, Lee HL (1995) Lot sizing with random yields: a review. Oper Res 43:311–334. doi:10.1287/opre.43.2.311

    Article  MATH  Google Scholar 

  • Zhou SX, Yu Y (2011) Optimal product acquisition, pricing, and inventory management for systems with remanufacturing. Oper Res 59:514–521

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou SX, Tao Z, Chao X (2011) Optimal control of inventory systems with multiple types of remanufacturable products. Manufactur Serv Oper Manage 13:20–34. doi:10.1287/msom.1100.0298

    Article  Google Scholar 

  • Zikopoulos C, Tagaras G (2007) Impact of uncertainty in the quality of returns on the profitability of a single-period refurbishing operation. Eur J Oper Res 182:205–225. doi:10.1016/j.ejor.2006.10.025

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jing .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Lemma 1

Define H(x, ρ) = θ( f ) + ω(p) − ρ(η(r) + θ(f)) and \( K\left(\mathrm{x}\right)=\frac{\theta (f)+\omega (p)}{\theta (f)+\eta (r)}, \) where x = (r, f, p). It is obvious that E[Π(x)] is differentiable for H(x, B) < 0 and H(x, B) > 0. The only thing that needs to be proven is whether E[Π(x)] is differentiable at H(x, B) = 0. Let x0 = {x | H(x, B) = 0}; it can be shown that the partial derivatives at x0 exist and are continuous.

Denote Δ as a vector so that H(x0 + Δ, B) > 0 and H(x0Δ, B) < 0. Consider the special case where Δ i  = te i  = (0, …, t, …, 0), i ∈ {r, f, p}.

$$ \begin{array}{c}E\left[\prod \left({\mathrm{x}}_0\right)\right]-E\left[\prod \right({\mathrm{x}}_0-{\boldsymbol{\Delta}}_{\mathbf{r}}\left)\right]=\eta \left({r}_0-t\right)\left({r}_0-t+d\right)-\eta \left({r}_0\right)\left({r}_0+d\right)\\ {}+\left({c}_r-c\right)\left({\displaystyle {\int}_A^{K\left({\mathbf{x}}_0\right)}H\left({\mathbf{x}}_{\mathbf{0}},\rho \right)g\left(\rho \right) d\rho}\right)\\ {}-{\displaystyle {\int}_A^{K\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}}\right)}H\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}},\rho \right)g\left(\rho \right) d\rho \Big)}\end{array} $$

Let |Δ r | → 0:

$$ \begin{array}{l}\kern0.6em {\displaystyle {\int}_A^{K\left({\mathbf{x}}_0\right)}H\left({\mathbf{x}}_{\mathbf{0}},\rho \right)g\left(\rho \right) d\rho}-{\displaystyle {\int}_A^{K\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}}\right)}H\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}},\rho \right)g\left(\rho \right) d\rho}\\ {}={\displaystyle {\int}_A^{K\left({\mathbf{x}}_0\right)}\left(H\left({\mathbf{x}}_{\mathbf{0}},\rho \right)-H\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}},\rho \right)\right)g\left(\rho \right) d\rho}+{\displaystyle {\int}_{K\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}}\right)}^{K\left({\mathbf{x}}_0\right)}H\left({\mathbf{x}}_{\mathbf{0}},\rho \right)g\left(\rho \right) d\rho}\\ {}={\displaystyle {\int}_A^{K\left({\mathbf{x}}_0\right)}t{H}_r^{\prime}\left({\mathbf{x}}_{\mathbf{0}},\rho \right)g\left(\rho \right) d\rho}+o(t)+\left(K\left({\mathbf{x}}_{\mathbf{0}}\right)-K\left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}}\right)\right)H\left({\mathbf{x}}_{\mathbf{0}},\xi \right)\end{array} $$

where K(x 0  − Δ r ) < ξ < K(x 0 ) and ξ → K(x 0 ) as |Δ r | → 0.

Then we can obtain

$$ \begin{array}{l}\underset{\left|{\boldsymbol{\Delta}}_{\mathbf{r}}\right|\to 0}{ \lim}\frac{E\left[\prod \left({\mathbf{x}}_{\mathbf{0}}\right)\right]-E\left[\prod \left({\mathbf{x}}_{\mathbf{0}}-{\boldsymbol{\Delta}}_{\mathbf{r}}\right)\right]}{\left|{\varDelta}_r\right|}\\ {}=-\eta \left({r}_0\right)-{\eta}_r^{\prime}\left({r}_0\right)\left({r}_0+d\right)+\left({c}_r-c\right)\left({\displaystyle {\int}_A^{K\left({\mathbf{x}}_{\mathbf{0}}\right)}{H}_r^{\prime}\left({\mathbf{x}}_{\mathbf{0}},\rho \right)g\left(\rho \right) d\rho +{K}_r^{\prime}\left({\mathbf{x}}_{\mathbf{0}}\right)H\left({\mathbf{x}}_{\mathbf{0}},K\left({\mathbf{x}}_{\mathbf{0}}\right)\right)}\right)\\ {}=-\eta \left({r}_0\right)-{\eta}_r^{\prime}\left({r}_0\right)\left({r}_0+d\right)+\left(c-{c}_r\right){\eta}_r^{\prime}\left({r}_0\right)\mu \end{array} $$

The last equality comes from the fact that K(x0) = B. It is easy to show that

$$ \begin{array}{l}\kern0.48em \underset{\left|{\boldsymbol{\Delta}}_{\mathbf{r}}\right|\to 0}{ \lim}\frac{E\left[\prod \left({\mathbf{x}}_{\mathbf{0}}+{\boldsymbol{\Delta}}_{\mathbf{r}}\right)\right]-E\left[\prod \left({\mathbf{x}}_{\mathbf{0}}\right)\right]}{\left|{\varDelta}_r\right|}\\ {}=-\eta \left({r}_0\right)-{\eta}_r^{\prime}\left({r}_0\right)\left({r}_0+d\right)+\left(c-{c}_r\right){\eta}_r^{\prime}\left({r}_0\right)\mu \end{array} $$

Similarly, it can be proven that the partial derivatives exist and are continuous with respect to f and p. Hence, E[∏(x)] is differentiable at x0.

Poof of Proposition 2

It is easy to show that E[∏(r, f, p)] is concave when (θ + η)A ≤ θ + ω ≤ (θ + η)B. For (θ + η)A ≤ θ + ω ≤ (θ + η)B, it is necessary to show E[−∏ (r, f, p)] is convex in r, f, and p. Applying Sylvester’s criterion, it is equivalent to prove

  1. 1.
    $$ {H}_1=\frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial {r}^2}>0; $$
  2. 2.
    $$ {H}_2=\left|\begin{array}{cc}\hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial {r}^2}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial r\partial f}\hfill \\ {}\hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial r\partial f}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial {f}^2}\hfill \end{array}\right|>0; $$

    and

  3. 3.
    $$ {H}_3=\left|\begin{array}{ccc}\hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial {r}^2}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial r\partial f}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial r\partial p}\hfill \\ {}\hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial f\partial r}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial {f}^2}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial f\partial p}\hfill \\ {}\hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial p\partial r}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial p\partial f}\hfill & \hfill \frac{\partial^2E\left[-\prod \left(r,f,p\right)\right]}{\partial {p}^2}\hfill \end{array}\right|>0. $$

Define \( C={\scriptscriptstyle \frac{c-{c}_r}{\eta +\theta }}g\left({\scriptscriptstyle \frac{\omega +\theta }{\eta +\theta }}\right),x={\scriptscriptstyle \frac{\beta \left(\omega +\theta \right)}{\eta +\theta }}, \) and \( y={\scriptscriptstyle \frac{\gamma \left(\eta -\omega \right)}{\eta +\theta }} \). Since c > c r , it is straightforward that C > 0. It can be obtained that H 1 = 2β + Cx 2 > 0, H 2 = 4βγ + 2Cβy 2 + 2Cγx 2 > 0, and H 3 = 4Cby 2 β + 4Cbx 2 γ + 8bβγ + 4Cb 2 βγ > 0. Therefore, the expected profit function is concave on (θ + η)B ≤ θ + ω. Combing Proposition 1, it can be concluded that E[∏(r, f, p)] is concave.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Jing, L., Huang, B., Yuan, X.M. (2014). Pricing Strategies of Remanufacturing Business with Replacement Purchase. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_104-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_104-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics