Skip to main content

Isolation of Capillaries from Small Amounts of Mouse Brain Tissue

  • Protocol
  • First Online:
Neuroprotection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2761))

  • 816 Accesses

Abstract

The integrity of the blood-brain barrier (BBB) is essential for the normal functioning of the central nervous system (CNS). Isolated brain capillaries are essential for analyzing changes in protein and gene expression at the BBB under physiological and pathological conditions. The standard methods for isolating brain capillaries require the use of at least one or more mouse brains in order to obtain sufficient quantity and purity of brain capillaries. Here, we describe an optimized protocol for isolating and purifying capillaries from tiny amounts of mouse cerebral cortex using manual homogenization, density gradient centrifugation, and filtration while preserving the structural integrity and functional activity of microvessel fragments. Western blotting showed that proteins expressed at the BBB were enriched in mouse brain capillaries isolated by the optimized method compared to cerebral cortex protein homogenates. This approach can be used for the analysis of a variety of rare mouse genetic models and can also help the investigators to understand regional differences in susceptibility to pathological phenomena such as ischemia and traumatic brain injury. This will allow the investigators to better understand the physiology and pathology of the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ, Friedman A (2012) Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 53:1–6. https://doi.org/10.1111/j.1528-1167.2012.03696.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance, and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  PubMed  PubMed Central  Google Scholar 

  5. Furtado D, Björnmalm M, Ayton S et al (2018) Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 30:1801362. https://doi.org/10.1002/adma.201801362

    Article  CAS  Google Scholar 

  6. Nation DA, Sweeney MD, Montagne A et al (2019) Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25:270–276. https://doi.org/10.1038/s41591-018-0297-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lan G, Wang P, Chan RB et al (2022) Astrocytic VEGFA: an essential mediator in blood–brain-barrier disruption in Parkinson’s disease. Glia 70:337–353. https://doi.org/10.1002/glia.24109

    Article  CAS  PubMed  Google Scholar 

  8. Kassner A, Merali Z (2015) Assessment of blood–brain barrier disruption in stroke. Stroke 46:3310–3315. https://doi.org/10.1161/strokeaha.115.008861

    Article  PubMed  Google Scholar 

  9. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ et al (2014) Role of the blood–brain barrier in multiple sclerosis. Arch Med Res 45:687–697. https://doi.org/10.1016/j.arcmed.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  10. Alluri H, Wiggins-Dohlvik K, Davis ML et al (2015) Blood–brain barrier dysfunction following traumatic brain injury. Metab Brain Dis 30:1093–1104. https://doi.org/10.1007/s11011-015-9651-7

    Article  PubMed  Google Scholar 

  11. Gendosz de Carrillo D, Student S, Bula D et al (2023) The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage. Histochem Cell Biol 159:91–114. https://doi.org/10.1007/s00418-022-02150-9

    Article  CAS  PubMed  Google Scholar 

  12. Helms HC, Abbott NJ, Burek M et al (2016) In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 36:862–890. https://doi.org/10.1177/0271678x16630991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu Z, Hofman FM, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130:53–63. https://doi.org/10.1016/s0165-0270(03)00206-1

    Article  CAS  PubMed  Google Scholar 

  14. Munikoti VV, Hoang-Minh LB, Ormerod BK (2012) Enzymatic digestion improves the purity of harvested cerebral microvessels. J Neurosci Methods 207:80–85. https://doi.org/10.1016/j.jneumeth.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein GW, Wolinsky JS, Csejtey J, Diamond I (1975) Isolation of metabolically active capillaries from rat brain. J Neurochem 25:715–717. https://doi.org/10.1111/j.1471-4159.1975.tb04395.x

    Article  CAS  PubMed  Google Scholar 

  16. Hartz AMS, Schulz JA, Sokola BS et al (2018) Isolation of cerebral capillaries from fresh human brain tissue. J Vis Exp. https://doi.org/10.3791/57346

  17. Takakura Y, Audus KL, Borchardt RT (1991) Blood—brain barrier: transport studies in isolated brain capillaries and in cultured brain endothelial cells:137–165. https://doi.org/10.1016/s1054-3589(08)60034-4

  18. Dilling C, Roewer N, Förster CY, Burek M (2017) Multiple protocadherins are expressed in brain microvascular endothelial cells and might play a role in tight junction protein regulation. J Cereb Blood Flow Metab 37:3391–3400. https://doi.org/10.1177/0271678x16688706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burek M, König A, Lang M et al (2019) Hypoxia-induced MicroRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Transl Stroke Res 10:672–683. https://doi.org/10.1007/s12975-018-0683-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burek M, Burmester S, Salvador E et al (2020) Kidney ischemia/reperfusion injury induces changes in the drug transporter expression at the blood–brain barrier in vivo and in vitro. Front Physiol 11. https://doi.org/10.3389/fphys.2020.569881

  21. Lee Y-K, Uchida H, Smith H et al (2019) The isolation and molecular characterization of cerebral microvessels. Nat Protoc 14:3059–3081. https://doi.org/10.1038/s41596-019-0212-0

    Article  CAS  PubMed  Google Scholar 

  22. Silbergeld DL, Ali-Osman F (1991) Isolation and characterization of microvessels from normal brain and brain tumors. J Neuro-Oncol 11:49–55. https://doi.org/10.1007/bf00166997

    Article  CAS  Google Scholar 

  23. Ogata S, Ito S, Masuda T, Ohtsuki S (2021) Efficient isolation of brain capillary from a single frozen mouse brain for protein expression analysis. J Cereb Blood Flow Metab 41:1026–1038. https://doi.org/10.1177/0271678x20941449

    Article  CAS  PubMed  Google Scholar 

  24. Paraiso HC, Wang X, Kuo P-C et al (2020) Isolation of mouse cerebral microvasculature for molecular and single-cell analysis. Front Cell Neurosci 14. https://doi.org/10.3389/fncel.2020.00084

Download references

Acknowledgments

We thank Elisabeth Wilken for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Burek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mi, J., Sun, A., Härtel, L., Dilling, C., Meybohm, P., Burek, M. (2024). Isolation of Capillaries from Small Amounts of Mouse Brain Tissue. In: Ray, S.K. (eds) Neuroprotection. Methods in Molecular Biology, vol 2761. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3662-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3662-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3661-9

  • Online ISBN: 978-1-0716-3662-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics