Skip to main content

Expansion and Retroviral Transduction of Primary Murine T Cells for CAR T-Cell Therapy

  • Protocol
  • First Online:
Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2748))

  • 1284 Accesses

Abstract

The development of chimeric antigen receptor (CAR) T cells has been a revolutionary technology for the treatment of relapsed and refractory leukemias and lymphomas. The synthetic CAR molecule redirects T cell function toward tumor surface-expressed antigens through a single-chain variable fragment (scFv) fused to CD3z and intracellular costimulatory domains. Here, we describe a protocol for the generation of CAR T cells using primary mouse T cells and a gammaretroviral vector encoding a CAR transgene. This protocol outlines several transduction and expansion methods based on the use of two transduction enhancers, RetroNectin® and Vectofusin®-1, and cell culture systems such as conventional plates or G-Rex® devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baumann JG, Unutmaz D, Miller MD, Breun SK, Grill SM, Mirro J, Littman DR, Rein A, Kewal Ramani VN (2004) Murine T cells potently restrict human immunodeficiency virus infection. J Virol 78(22):12537–12547. https://doi.org/10.1128/JVI.78.22.12537-12547.2004

    Article  CAS  PubMed  Google Scholar 

  2. Tsurutani N, Yasuda J, Yamamoto N, Choi BI, Kadoki M, Iwakura Y (2007) Nuclear import of the preintegration complex is blocked upon infection by human immunodeficiency virus type 1 in mouse cells. J Virol 81(2):677–688. https://doi.org/10.1128/JVI.00870-06

    Article  CAS  PubMed  Google Scholar 

  3. Kerkar SP, Sanchez-Perez L, Yang S, Borman ZA, Muranski P, Ji Y, Chinnasamy D, Kaiser AD, Hinrichs CS, Klebanoff CA, Scott CD, Gattinoni L, Morgan RA, Rosenberg SA, Restifo NP (2011) Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. J Immunother 34(4):343–352. https://doi.org/10.1097/CJI.0b013e3182187600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hughes MS, Yu YY, Dudley ME, Zheng Z, Robbins PF, Li Y, Wunderlich J, Hawley RG, Moayeri M, Rosenberg SA, Morgan RA (2005) Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther 16(4):457–472. https://doi.org/10.1089/hum.2005.16.457

    Article  CAS  PubMed  Google Scholar 

  5. Naviaux RK, Costanzi E, Haas M, Verma IM (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70(8):5701–5705. https://doi.org/10.1128/JVI.70.8.5701-5705.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evgin L, Kottke T, Tonne J, Thompson J, Huff AL, van Vloten J, Moore M, Michael J, Driscoll C, Pulido J, Swanson E, Kennedy R, Coffey M, Loghmani H, Sanchez-Perez L, Olivier G, Harrington K, Pandha H, Melcher A, Diaz RM, Vile RG (2022) Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Transl Med 14(640):eabn2231. https://doi.org/10.1126/scitranslmed.abn2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evgin L, Huff AL, Wongthida P, Thompson J, Kottke T, Tonne J, Schuelke M, Ayasoufi K, Driscoll CB, Shim KG, Reynolds P, Monie DD, Johnson AJ, Coffey M, Young SL, Archer G, Sampson J, Pulido J, Perez LS, Vile R (2020) Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat Commun 11(1):3187. https://doi.org/10.1038/s41467-020-17011-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanenberg H, Xiao XL, Dilloo D, Hashino K, Kato I, Williams DA (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med 2(8):876–882. https://doi.org/10.1038/nm0896-876

    Article  CAS  PubMed  Google Scholar 

  9. Majdoul S, Seye AK, Kichler A, Holic N, Galy A, Bechinger B, Fenard D (2016) Molecular determinants of Vectofusin-1 and its derivatives for the enhancement of lentivirally mediated gene transfer into hematopoietic stem/progenitor cells. J Biol Chem 291(5):2161–2169. https://doi.org/10.1074/jbc.M115.675033

    Article  CAS  PubMed  Google Scholar 

  10. Vermeer LS, Hamon L, Schirer A, Schoup M, Cosette J, Majdoul S, Pastre D, Stockholm D, Holic N, Hellwig P, Galy A, Fenard D, Bechinger B (2017) Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent alpha-helical nanofibrils, concentrating viral particles. Acta Biomater 64:259–268. https://doi.org/10.1016/j.actbio.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  11. Radek C, Bernadin O, Drechsel K, Cordes N, Pfeifer R, Strasser P, Mormin M, Gutierrez-Guerrero A, Cosset FL, Kaiser AD, Schaser T, Galy A, Verhoeyen E, Johnston ICD (2019) Vectofusin-1 improves transduction of primary human cells with diverse retroviral and lentiviral pseudotypes, enabling robust, automated closed-system manufacturing. Hum Gene Ther 30(12):1477–1493. https://doi.org/10.1089/hum.2019.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, Wilson J, Dotti G, Heslop HE, Leen AM, Rooney CM (2010) Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother 33(3):305–315. https://doi.org/10.1097/CJI.0b013e3181c0c3cb

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin J, Sabatino M, Somerville R, Wilson JR, Dudley ME, Stroncek DF, Rosenberg SA (2012) Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J Immunother 35(3):283–292. https://doi.org/10.1097/CJI.0b013e31824e801f

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bajgain P, Mucharla R, Wilson J, Welch D, Anurathapan U, Liang B, Lu X, Ripple K, Centanni JM, Hall C, Hsu D, Couture LA, Gupta S, Gee AP, Heslop HE, Leen AM, Rooney CM, Vera JF (2014) Optimizing the production of suspension cells using the G-Rex “M” series. Mol Ther Methods Clin Dev 1:14015. https://doi.org/10.1038/mtm.2014.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gagliardi C, Khalil M, Foster AE (2019) Streamlined production of genetically modified T cells with activation, transduction and expansion in closed-system G-Rex bioreactors. Cytotherapy 21(12):1246–1257. https://doi.org/10.1016/j.jcyt.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  16. Ludwig J, Hirschel M (2086) Methods and process optimization for large-scale CAR T expansion using the G-Rex cell culture platform. Methods Mol Biol 2020:165–177. https://doi.org/10.1007/978-1-0716-0146-4_12

    Article  CAS  Google Scholar 

  17. Gotti E, Tettamanti S, Zaninelli S, Cuofano C, Cattaneo I, Rotiroti MC, Cribioli S, Alzani R, Rambaldi A, Introna M, Golay J (2022) Optimization of therapeutic T cell expansion in G-Rex device and applicability to large-scale production for clinical use. Cytotherapy 24(3):334–343. https://doi.org/10.1016/j.jcyt.2021.11.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Steven A. Rosenberg, Richard A. Morgan, and Steven Feldman of the Surgery Branch at the National Cancer Institute for providing us with the MSGV1 retroviral construct into which the mouse CD19 CAR was cloned. This work was funded by BC Cancer Research, the BC Cancer Foundation, CIHR, and an MSHRBC Scholar Award (LE), as well as the Fondation Léon Fredericq (grant to PL) and a Canadian Cancer Society Research Training Award (GS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Evgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Loos, P., Short, L., Savage, G., Evgin, L. (2024). Expansion and Retroviral Transduction of Primary Murine T Cells for CAR T-Cell Therapy. In: Siciliano, V., Ceroni, F. (eds) Cancer Immunotherapy. Methods in Molecular Biology, vol 2748. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3593-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3593-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3592-6

  • Online ISBN: 978-1-0716-3593-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics