Skip to main content

Neural Endophenotype Assessment in Zebrafish Larvae Using Optomotor and ZebraBox Locomotion Assessment

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

Abstract

Due to the highly conserved genetics across the central nervous system, the easily probed visual system can act as an endophenotype for assessing neurological function. Here, we describe a psychophysics approach to assess visually driven swimming behavior in the high-throughput zebrafish genetic model system. We use the optomotor response test together with general locomotion behavior to assess neural processing while excluding motor defects related to muscle function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curpan AS, Balmus IM, Dobrin RP et al (2022) A mini-review regarding the modalities to study neurodevelopmental disorders-like impairments in zebrafish-focussing on neurobehavioural and psychological responses. Brain Sci 12(9). https://doi.org/10.3390/brainsci12091147

  2. Bilotta J, Saszik S (2001) The zebrafish as a model visual system. Int J Dev Neurosci 19(7):621–629. https://doi.org/10.1016/s0736-5748(01)00050-8

    Article  CAS  PubMed  Google Scholar 

  3. Chhetri J, Jacobson G, Gueven N (2014) Zebrafish--on the move towards ophthalmological research. Eye (Lond) 28(4):367–380. https://doi.org/10.1038/eye.2014.19

    Article  CAS  PubMed  Google Scholar 

  4. Gestri G, Link BA, Neuhauss SC (2012) The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 72(3):302–327. https://doi.org/10.1002/dneu.20919

    Article  PubMed  PubMed Central  Google Scholar 

  5. Easter SS Jr, Malicki JJ (2002) The zebrafish eye: developmental and genetic analysis. Results Probl Cell Differ 40:346–370. https://doi.org/10.1007/978-3-540-46041-1_17

    Article  CAS  PubMed  Google Scholar 

  6. Xie J, Jusuf PR, Bui BV et al (2019) Experience-dependent development of visual sensitivity in larval zebrafish. Sci Rep 9(1):18931. https://doi.org/10.1038/s41598-019-54958-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orger MB, Gahtan E, Muto A et al (2004) Behavioral screening assays in zebrafish. Methods Cell Biol 77:53–68. https://doi.org/10.1016/s0091-679x(04)77003-x

    Article  PubMed  Google Scholar 

  8. Sztal TE, Ruparelia AA, Williams C et al (2016) Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish. J Vis Exp 116. https://doi.org/10.3791/54431

  9. Neuhauss SC (2003) Behavioral genetic approaches to visual system development and function in zebrafish. J Neurobiol 54(1):148–160. https://doi.org/10.1002/neu.10165

    Article  CAS  PubMed  Google Scholar 

  10. Neuhauss SC, Biehlmaier O, Seeliger MW et al (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19(19):8603–8615. https://doi.org/10.1523/JNEUROSCI.19-19-08603.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mario K, David B, Denis P et al (2007) What’s new in Psychtoolbox-3. Perception 36(14):1–1

    Google Scholar 

  12. Bizrah M, Dakin SC, Guo L et al (2014) A semi-automated technique for labeling and counting of apoptosing retinal cells. BMC Bioinf 15(1):1–12

    Article  Google Scholar 

  13. Lu Z-L, Dosher B (2013) Visual psychophysics: from laboratory to theory. MIT Press

    Book  Google Scholar 

  14. D'AGOSTINO R, Pearson ES (1973) Tests for departure from normality. Empirical results for the distributions of b 2 and√ b. Biometrika 60(3):613–622

    Google Scholar 

  15. Dunn TW, Fitzgerald JE (2020) Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience. eLife 9:e53684. https://doi.org/10.7554/eLife.53684

    Article  PubMed  PubMed Central  Google Scholar 

  16. Creton R (2009) Automated analysis of behavior in zebrafish larvae. Behav Brain Res 203(1):127–136. https://doi.org/10.1016/j.bbr.2009.04.030

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia R. Jusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xie, J., Goodbourn, P., Sztal, T., Jusuf, P.R. (2024). Neural Endophenotype Assessment in Zebrafish Larvae Using Optomotor and ZebraBox Locomotion Assessment. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics