Skip to main content

Quantitative Measurement of Pattern-Triggered ROS Burst as an Early Immune Response in Tomato

  • Protocol
  • First Online:
Plant Peptide Hormones and Growth Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2731))

  • 590 Accesses

Abstract

The rapid accumulation of extracellular “reactive oxygen species” (ROS), also known as the “oxidative burst”, is an early plant immune response triggered by pathogen-derived microbe-associated molecular patterns and by endogenous plant signaling molecules. The oxidative burst is often used as a readout for the activation of defense signaling. Here, we present a detailed protocol for the continuous measurement of ROS production in leaf discs of tomato plants, using a chemiluminescence-based assay in a microtiter plate format. We also include recommendations for data analysis and for the quantitative assessment of differences in ROS burst dynamics, as caused by different types of elicitors, or in different tomato genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272. https://doi.org/10.1016/j.molcel.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  2. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552. https://doi.org/10.1038/nri.2016.77

    Article  CAS  PubMed  Google Scholar 

  3. Baureithel K, Felix G, Boller T (1994) Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a nod factor of rhizobium. J Biol Chem 269:17931–17938. https://doi.org/10.1016/S0021-9258(17)32399-2

    Article  CAS  PubMed  Google Scholar 

  4. Felix G, Duran JD, Volko S et al (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:165–276. https://doi.org/10.1046/j.1365-313x.1999.00265.x

    Article  Google Scholar 

  5. Zipfel C, Robatzek S, Navarro L et al (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  PubMed  Google Scholar 

  6. Hou S, Liu Z, Shen H et al (2019) Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci 10:646. https://doi.org/10.3389/fpls.2019.00646

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci U S A 104:10732–10736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hander T, Fernández-Fernández ÁD, Kumpf RP et al (2019) Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science 363:eaar7486. https://doi.org/10.1126/science.aar7486

    Article  CAS  PubMed  Google Scholar 

  9. Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during alicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol 90:109–116. https://doi.org/10.1104/pp.90.1.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Felix G, Boller T (1995) Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J 7:381–389. https://doi.org/10.1046/j.1365-313X.1995.7030381.x

    Article  CAS  Google Scholar 

  11. Blume B, Nürnberger T, Nass N et al (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440. https://doi.org/10.1105/tpc.12.8.1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeworutzki E, Roelfsema MR, Anschutz U et al (2010) Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves ca-associated opening of plasma membrane anion channels. Plant J 62:367–378. https://doi.org/10.1111/j.1365-313X.2010.04155.x

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Feng B, He P et al (2017) From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol 55:109–137. https://doi.org/10.1146/annurev-phyto-080516-035649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pearce G, Moura DS, Stratmann J et al (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820

    Article  CAS  PubMed  Google Scholar 

  15. Gust AA, Pruitt R, Nürnberger T (2017) Sensing danger: key to activating plant immunity. Trends Plant Sci 2:779–791. https://doi.org/10.1016/j.tplants.2017.07.005

    Article  CAS  Google Scholar 

  16. Haj Ahmad F, Wu X, Stintzi A et al (2019) The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Mol Cell Proteomics 18:1526–1542. https://doi.org/10.1074/mcp.RA119.001367

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stegmann M, Zecua-Ramirez P, Ludwig C et al (2022) RGI-GOLVEN signaling promotes cell surface immune receptor abundance to regulate plant immunity. EMBO Rep 23:e53281. https://doi.org/10.15252/embr.202153281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Li M, Yu L et al (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338. https://doi.org/10.1016/j.chom.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  19. Kimura S, Hunter K, Vaahtera L et al (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32:1063–1080. https://doi.org/10.1105/tpc.19.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Albert M, Butenko MA, Aalen RB et al (2015) Chemiluminescence detection of the oxidative burst in plant leaf pieces. Bio-protocol 5:e1423. https://doi.org/10.21769/BioProtoc.1423

    Article  Google Scholar 

  21. Bredow M, Sementchoukova I, Siegel K et al (2019) Pattern-triggered oxidative burst and seedling growth inhibition assays in Arabidopsis thaliana. J Vis Exp 147. https://doi.org/10.3791/59437

  22. Sang Y, Macho AP (2017) Analysis of PAMP-triggered ROS burst in plant immunity. Meth Mol Biol 1578:143–153. https://doi.org/10.1007/978-1-4939-6859-6_11

    Article  CAS  Google Scholar 

  23. Zhang Y, Dai M, Yuan Z (2018) Methods for the detection of reactive oxygen species. Anal Methods 10:4625–4638. https://doi.org/10.1039/c8ay01339j

    Article  CAS  Google Scholar 

  24. Zielonka J, Lambeth JD, Kalyanaraman B (2013) On the use of L-012, a luminol-based chemiluminescent probe, for detecting superoxide and identifying inhibitors of NADPH oxidase: a reevaluation. Free Rad Biol Med 65:1310–1314. https://doi.org/10.1016/j.freeradbiomed.2013.09.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB1101 project D06) to Annick Stintzi and Andreas Schaller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick Stintzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, R., Schaller, A., Stintzi, A. (2024). Quantitative Measurement of Pattern-Triggered ROS Burst as an Early Immune Response in Tomato. In: Schaller, A. (eds) Plant Peptide Hormones and Growth Factors. Methods in Molecular Biology, vol 2731. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3511-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3511-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3510-0

  • Online ISBN: 978-1-0716-3511-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics