Skip to main content

Analysis of Immunity-Related Oxidative Bursts by a Luminol-Based Assay

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2494))

Abstract

The rapid production of reactive oxygen species (ROS) in response to biotic and abiotic cues is a conserved hallmark of plant responses. The detection and quantification of ROS generation during immune responses is an excellent readout to analyze signaling triggered by the perception of pathogens. The assay described here is easy to employ and versatile, allowing its use in a multitude of variations. For example, ROS production can be analyzed using different tissues including whole seedlings, roots, leaves, protoplasts, and cultured cells, which can originate from different ecotypes or mutants. Samples can be tested in combination with any ROS-inducing elicitors, such as the FLS2-activating peptide flg22, but also lipids or even abiotic stresses. Furthermore, early (PAMP-triggered) and late (effector-triggered) ROS production induced by virulent and avirulent bacteria, respectively, can also be assayed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doke N (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal cell wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23:359–367

    Article  CAS  Google Scholar 

  2. Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357. https://doi.org/10.1016/0048-4059(83)90019-X

    Article  CAS  Google Scholar 

  3. Wu F, Chi Y, Jiang Z, Xu Y, Xie L, Huang F, Wan D, Ni J, Yuan F, Wu X, Zhang Y, Wang L, Ye R, Byeon B, Wang W, Zhang S, Sima M, Chen S, Zhu M, Pei J, Johnson DM, Zhu S, Cao X, Pei C, Zai Z, Liu Y, Liu T, Swift GB, Zhang W, Yu M, Hu Z, Siedow JN, Chen X, Pei ZM (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578(7796):577–581. https://doi.org/10.1038/s41586-020-2032-3

    Article  CAS  PubMed  Google Scholar 

  4. Wrzaczek M, Brosche M, Kangasjarvi J (2013) ROS signaling loops - production, perception, regulation. Curr Opin Plant Biol 16(5):575–582. https://doi.org/10.1016/j.pbi.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275. https://doi.org/10.1146/annurev.arplant.48.1.251

    Article  CAS  PubMed  Google Scholar 

  6. Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones A, Zipfel C (2014) Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol Cell 54(1):43–55. https://doi.org/10.1016/j.molcel.2014.02.021

    Article  CAS  PubMed  Google Scholar 

  7. Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011. https://doi.org/10.1016/s1097-2765(00)80265-8

    Article  CAS  PubMed  Google Scholar 

  8. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18(2):465–476. https://doi.org/10.1105/tpc.105.036574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427

    Article  CAS  PubMed  Google Scholar 

  10. Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154(1):391–400. https://doi.org/10.1104/pp.110.154567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daudi A, Cheng Z, O’Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24(1):275–287. https://doi.org/10.1105/tpc.111.093039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Z, Kloek AP, Boch J, Katagiri F, Kunkel BN (2000) The pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol Plant-Microbe Interact MPMI 13(12):1312–1321. https://doi.org/10.1094/MPMI.2000.13.12.1312

    Article  CAS  PubMed  Google Scholar 

  13. Nishinaka Y, Aramaki Y, Yoshida H, Masuya H, Sugawara T, Ichimori Y (1993) A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem Biophys Res Commun 193(2):554–559. https://doi.org/10.1006/bbrc.1993.1659

    Article  CAS  PubMed  Google Scholar 

  14. Melcher RL, Moerschbacher BM (2016) An improved microtiter plate assay to monitor the oxidative burst in monocot and dicot plant cell suspension cultures. Plant Methods 12:5. https://doi.org/10.1186/s13007-016-0110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18(18):1396–1401

    Article  CAS  Google Scholar 

  16. Smith JM, Heese A (2014) Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living pseudomonas syringae. Plant Methods 10(1):6. https://doi.org/10.1186/1746-4811-10-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support by the University of Freiburg, the Deutsche Forschungsgemeinschaft (DFG), and the SERB Postdoctoral Fellowship (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saeed, B., Trujillo, M. (2022). Analysis of Immunity-Related Oxidative Bursts by a Luminol-Based Assay. In: Duque, P., Szakonyi, D. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 2494. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2297-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2297-1_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2296-4

  • Online ISBN: 978-1-0716-2297-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics