Skip to main content

Evaluation of Barrier Integrity Using a Two-Layered Microfluidic Device Mimicking the Blood-Brain Barrier

  • Protocol
  • First Online:
Vascular Hyperpermeability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2711))

Abstract

The blood-brain barrier (BBB) plays an essential role in maintaining the homeostasis of the brain microenvironment by controlling the influx and efflux of biological substances that are necessary to sustain the neuronal metabolic activity and functions. This barrier is established at the blood-brain interface of the brain microcapillaries by different cells. These include microvascular endothelial cells, astrocytes, and pericytes besides other components such as microglia, basal membrane, and neuronal cells forming together what is commonly referred to as the neurovascular unit; different in vivo and in vitro platforms are available to study the BBB where each system provides specific benefits and drawbacks. Recently, organ-on-a-chip platforms combine the elegance of microengineering technology with the complexity of biological systems to create near-ideal experimental models for various diseases and organs. These microfluidic devices with micron-sized channels allow the cells to be grown in a more biologically relevant environment, enabling cell to cell communications with continuous bathing in biological fluids in a tissue-like fashion. They also closely represent tissue and organ functionality by recapitulating mechanical forces as well as vascular perfusion. Here, we describe the use of humanized BBB model created with microfluidic organ-on-a-chip technology where human brain microvascular endothelial cells (BMECs) are cocultured with primary human pericytes and astrocytes. We thoroughly described the method to assess BBB integrity using a microfluidic chip and various sizes of labeled dextran as permeability markers. In addition, we provide a detailed protocol on how to microscopically investigate the tight junction proteins expression between hBMECs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood-brain barrier development. Int J Dev Biol 55(4–5):467–476

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25

    Article  CAS  PubMed  Google Scholar 

  3. Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D (2011) The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci 12:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    Article  CAS  PubMed  Google Scholar 

  5. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP et al (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661

    Article  CAS  PubMed  Google Scholar 

  7. Ramsauer M, Krause D, Dermietzel R (2002) Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J 16(10):1274–1276

    Article  CAS  PubMed  Google Scholar 

  8. Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail—chick transplantation chimeras. Dev Biol 84(1):183–192

    Article  CAS  PubMed  Google Scholar 

  9. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325(6101):253–257

    Article  CAS  PubMed  Google Scholar 

  10. Rubin LL, Barbu K, Bard F, Cannon C, Hall DE, Horner H et al (1991) Differentiation of brain endothelial cells in cell culture. Ann N Y Acad Sci 633:420–425

    Article  CAS  PubMed  Google Scholar 

  11. Neuhaus J, Risau W, Wolburg H (1991) Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann N Y Acad Sci 633:578–580

    Article  CAS  PubMed  Google Scholar 

  12. Wolff A, Antfolk M, Brodin B, Tenje M (2015) In vitro blood-brain barrier models-an overview of established models and new microfluidic approaches. J Pharm Sci 104(9):2727–2746

    Article  CAS  PubMed  Google Scholar 

  13. van der Helm MW, van der Meer AD, Eijkel JC, van den Berg A, Segerink LI (2016) Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4(1):e1142493

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faria A, Pestana D, Teixeira D, Azevedo J, De Freitas V, Mateus N et al (2010) Flavonoid transport across RBE4 cells: a blood-brain barrier model. Cell Mol Biol Lett 15(2):234–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ (2011) Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 199(2):223–229

    Article  PubMed  Google Scholar 

  16. Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 814:415–430

    Article  CAS  PubMed  Google Scholar 

  17. Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ et al (2013) Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8(8):e70233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV (2014) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 4:4160

    Article  PubMed  PubMed Central  Google Scholar 

  19. Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA et al (2016) In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 36(5):862–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ott MJ, Olson JL, Ballermann BJ (1995) Chronic in vitro flow promotes ultrastructural differentiation of endothelial cells. Endothelium 3(1):21–30

    Article  Google Scholar 

  21. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y (2000) Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ Res 86(2):185–190

    Article  CAS  PubMed  Google Scholar 

  22. Ngai AC, Winn HR (1995) Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res 77(4):832–840

    Article  CAS  PubMed  Google Scholar 

  23. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  PubMed  Google Scholar 

  24. Booth R, Kim H (2014) Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model. Ann Biomed Eng 42(12):2379–2391

    Article  CAS  PubMed  Google Scholar 

  25. Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K et al (2015) Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep 5:15222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C, Pacheco AR et al (2018) A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol 36(9):865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prabhakarpandian B, Shen MC, Nichols JB, Garson CJ, Mills IR, Matar MM et al (2015) Synthetic tumor networks for screening drug delivery systems. J Control Release 201:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA et al (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10(1):2621

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cucullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kadry, H., Cucullo, L. (2024). Evaluation of Barrier Integrity Using a Two-Layered Microfluidic Device Mimicking the Blood-Brain Barrier. In: Tharakan, B. (eds) Vascular Hyperpermeability. Methods in Molecular Biology, vol 2711. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3429-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3429-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3428-8

  • Online ISBN: 978-1-0716-3429-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics