Skip to main content

Current Trends and Perspectives in Microbial Bioconversions of Steroids

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

Abstract

The microbiological transformation of sterols is currently the technological basis for the industrial production of valuable steroid precursors, the so-called synthons, from which a wide range of steroid and indane isoprenoids are obtained by combined chemical and enzymatic routes. These compounds include value-added corticoids, neurosteroids, sex hormones, bile acids, and other terpenoid lipids required by the medicine, pharmaceutical, food, veterinary, and agricultural industries.

Progress in understanding the molecular mechanisms of microbial degradation of steroids, and the development and implementation of genetic technologies, opened a new era in steroid biotechnology. Metabolic engineering of microbial producers makes it possible not only to improve the biocatalytic properties of industrial strains by enhancing their target activity and/or suppressing undesirable activities in order to avoid the formation of by-products or degradation of the steroid core, but also to redirect metabolic fluxes in cells towards accumulation of new metabolites that may be useful for practical applications. Along with whole-cell catalysis, the interest of researchers is growing in enzymatic methods that make it possible to carry out selective structural modifications of steroids, such as the introduction of double bonds, the oxidation of steroidal alcohols, or the reduction of steroid carbonyl groups. A promising area of research is strain engineering based on the heterologous expression of foreign steroidogenesis systems (bacterial, fungal, or mammalian) that ensure selective formation of demanded hydroxylated steroids.

Here, current trends and progress in microbial steroid biotechnology over the past few years are briefly reviewed, with a particular focus on the application of metabolic engineering and synthetic biology techniques to improve existing and create new whole-cell microbial biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. QY Research (2018) Global steroids market: corticosteroids segment to reach value of US$ 8.6 Bn by 2025 end – QY Research, Inc. Available via PRNewswire. www.prnewswire.com/in/news-releases/global-steroids-market-corticosteroids-segment-to-reach-value-of-us-86-bn-by-2025-end—qy-research-inc-693708281.html

  2. The Business Research Company (2023) Available via: www.databridgemarketresearch.com/reports/

  3. Ahmed MH, Hassan A (2020) Dexamethasone for the treatment of coronavirus disease (COVID-19): a review. SN Compr Clin Med 2:2637–2646. https://doi.org/10.1007/s42399-020-00610-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Global androgens and anabolic steroids market – industry trends and forecast to 2029. Available via: databridgemarketresearch.com/reports/global-androgens-and-anabolic-steroids-market

  5. Olivera ER, Luengo JM (2019) Steroids as environmental compounds recalcitrant to degradation: genetic mechanisms of bacterial biodegradation pathways. Genes 10:512. https://doi.org/10.3390/genes10070512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feller FM, Holert J, Yücel O, Philipp B (2021) Degradation of bile acids by soil and water bacteria. Microorganisms 9:1759. https://doi.org/10.3390/microorganisms9081759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendelski MN, Dölling R, Feller FM, Hofmann D, Ramos Fangmeier L, Ludwig KC, Yücel O, Mährlein A, Paul RJ, Philipp B (2019) Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils. Sci Rep 9:11120. https://doi.org/10.1038/s41598-019-47476-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holert J, Cardenas E, Bergstrand LH, Zaikova E, Hahn AS, Hallam SJ, Mohn WW (2018) Metagenomes reveal global distribution of bacterial steroid catabolism in natural, engineered, and host environments. mBio 9:e02345-17. https://doi.org/10.1128/mBio.02345-17

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lobastova T, Fokina V, Tarlachkov S, Shutov A, Bragin E, Kazantsev A, Donova M (2021) Steroid metabolism in thermophilic actinobacteria Saccharopolyspora hirsuta VKM Ac-666T. Microorganisms 9(12):2554–2572. https://doi.org/10.3390/microorganisms9122554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lobastova T, Fokina V, Pozdnyakova-Filatova I, Tarlachkov S, Shutov A, Donova M (2022) Insight into different stages of steroid degradation in thermophilic Saccharopolyspora hirsuta VKM Ac-666T strain. Int J Mol Sci 23(24):16174. https://doi.org/10.3390/ijms232416174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feller FM, Wöhlbrand L, Holert J, Schnaars V, Elsner L, Mohn WW, Rabus R, Philipp B (2021) Proteome, bioinformatic, and functional analyses reveal a distinct and conserved metabolic pathway for bile salt degradation in the Sphingomonadaceae. Appl Environ Microbiol 87:e00987–e00921. https://doi.org/10.1128/AEM.00987-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta RS, Lo B, Son J (2018) Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 9:67. https://doi.org/10.3389/fmicb.2018.00067

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25(7):461–474. https://doi.org/10.1002/jobm.3620250713

    Article  CAS  PubMed  Google Scholar 

  14. Zhao A, Zhang X, Li Y, Wang Z, Lv Y, Liu J, Alam MA, Xiong W, Xu J (2021) Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2021.107860

  15. Fernández-Cabezón L, Galán B, García JL (2018) New insights on steroid biotechnology. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00958

  16. Galan B, Garcia-Fernandez J, Felpeto-Santero C, Fernandez-Cabezon L, Garcia JL (2019) Bacterial metabolism of steroids. In: Aerobic utilization of hydrocarbons, oils, and lipids, pp 315–336. https://doi.org/10.1007/978-3-319-50418-6_43

    Chapter  Google Scholar 

  17. Giorgi V, Pilar Menandez P, Garcia Carnelli C (2019) Microbial transformation of cholesterol: reactions and practical aspects—an update. World J Microbiol Biotechnol 35:131. https://doi.org/10.1007/s11274-019-2708-8

    Article  CAS  PubMed  Google Scholar 

  18. Feng J, Wu Q, Zhu D, Ma Y (2022) Biotransformation enables innovations toward green synthesis of steroidal pharmaceuticals. ChemSusChem 15(9):e202102399. https://doi.org/10.1002/cssc.202102399

    Article  CAS  PubMed  Google Scholar 

  19. Galan B, Uhia I, Garcia-Fernandez E, Martinez I, Bahillo E, de la Fuente JL, Barredo JL, Fernandez-Cabezon L, Garcia JL (2017) Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol 10:138–150. https://doi.org/10.1111/1751-7915.12429

    Article  CAS  PubMed  Google Scholar 

  20. Weckerle T, Ewald H, Guth P, Knorr K-H, Philipp B, Holert J (2022) Biogas digestate as a sustainable phytosterol source for biotechnological cascade valorization. Microb Biotechnol:1–13. https://doi.org/10.1111/1751-7915.14174

  21. Randhir A, Laird DW, Maker G, Trengove R, Moheimani NR (2020) Microalgae: a potential sustainable commercial source of sterols. Algal Res 46:101772. https://doi.org/10.1016/j.algal.2019.101772

    Article  Google Scholar 

  22. Gu Y, Jiao X, Ye L et al (2021) Metabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast. Bioresour Bioprocess 8:110. https://doi.org/10.1186/s40643-021-00460-9

  23. Prasad M, Jayaraman S, Eladl MA, El-Sherbiny M, Abdelrahman MAE, Veeraraghavan VP, Vengadassalapathy S, Umapathy VR, Jaffer Hussain SF, Krishnamoorthy K et al (2022) A comprehensive review on therapeutic perspectives of phytosterols in insulin resistance: a mechanistic approach. Molecules 27:1595. https://doi.org/10.3390/molecules27051595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang H, Zhang H, Zhu L, Zhang W, You S, Qi W, Qian J, Su R, He Z (2020) A combined strategy of metabolic pathway regulation and two-step bioprocess for improved 4-androstene-3,17-dione production with an engineered Mycobacterium neoaurum. Biochem Eng J 164:107789. https://doi.org/10.1016/j.bej.2020.107789A

  25. Nunes VO, Vanzellotti NC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF (2020) Biotransformation of phytosterols into androstenedione—a technological prospecting study. Molecules 27:3164. https://doi.org/10.3390/molecules27103164

    Article  CAS  Google Scholar 

  26. Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M (2020) Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresour Technol 309:123307. https://doi.org/10.1016/j.biortech.2020.123307

  27. Shao M, Zhang X, Rao Z, Xu M, Yang T, Xu Z, Yang S (2019) Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. J Ind Microbiol Biotechnol 46:635–647. https://doi.org/10.1007/s10295-018-02135-5

    Article  CAS  PubMed  Google Scholar 

  28. Xiong L-B, Liu H-H, Song X-W, Meng X-G, Liu X-Z, Ji Y-Q, Wang F-Q, Wei D-Z (2020) Improving the biotransformation of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by deleting embC associated with the assembly of cell envelope in Mycobacterium neoaurum. J Biotechnol 323:341–346. https://doi.org/10.1016/j.jbiotec.2020.09.019

    Article  CAS  PubMed  Google Scholar 

  29. Xiong LB, Liu HH, Zhao M et al (2020) Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Microb Cell Factories 19:80. https://doi.org/10.1186/s12934-020-01335-y

    Article  CAS  Google Scholar 

  30. Sun H, Yang J, Song H (2020) Engineering mycobacteria artificial promoters and ribosomal binding sites for enhanced sterol production. Biochem Eng J:107739. https://doi.org/10.1016/j.bej.2020.107739

  31. Yuan CY, Ma ZG, Zhang JX et al (2021) Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Microb Cell Factories 20:229. https://doi.org/10.1186/s12934-021-01717-w

    Article  CAS  Google Scholar 

  32. Yuan C, Song S, He J, Zhang J, Liu X, Pena EL, Sun J, Shi J, Su Z, Zhang B (2022) Bioconversion of phytosterols to 9-hydroxy-3-oxo-4,17-pregnadiene-20-carboxylic acid methyl ester by enoyl-CoA deficiency and modifying multiple genes in Mycolicibacterium neoaurum. Appl Environ Microbiol 88:22. https://doi.org/10.1128/aem.01303-22

    Article  CAS  Google Scholar 

  33. Civra A, Cagno V, Donalisio M et al (2014) Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci Rep 4:7487. https://doi.org/10.1038/srep07487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marcello A, Civra A, Bonotto RM, Alves LN, Rajasekharan S, Giacobone C, Caccia C, Cavalli R, Adami M, Brambilla P, Lembo D, Poli G, Leoni V (2020) The cholesterol metabolite 27-hydroxycholesterol inhibits SARS-CoV-2 and is markedly decreased in COVID-19 patients. Redox Biol 36:101682. https://doi.org/10.1016/j.redox.2020.101682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Crowe AM, Casabon I, Brown KL, Liu J, Lian J, Rogalski JC, Hurst TE, Snieckus V, Foster LJ, Eltis LD (2017) Catabolism of the last two steroid rings in Mycobacterium tuberculosis and other bacteria. mBio 8:e00321-17. https://doi.org/10.1128/mBio.00321-17

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu N, Feng J, Zhang R, Chen X, Li X, Yao P, Wu Q, Ma Y, Zhu D (2019) Efficient microbial synthesis of key steroidal intermediates from bio-renewable phytosterols by genetically modified Mycobacterium fortuitum strains. Green Chem 21:4076. https://doi.org/10.1039/C9GC01267B

    Article  CAS  Google Scholar 

  37. Fernández-Cabezón L, Galán B, García JL (2017) Engineering Mycobacterium smegmatis for testosterone production. Microb Biotechnol 10:151–161. https://doi.org/10.1111/1751-7915.12433

    Article  CAS  PubMed  Google Scholar 

  38. Tekucheva DN, Nikolayeva VM, Karpov MV, Timakova TA, Shutov AV, Donova MV (2022) Bioproduction of testosterone from phytosterol by Mycolicibacterium neoaurum strains: “one-pot”, two modes. Bioresour Bioprocess 9:116. https://doi.org/10.1186/s40643-022-00602-7

    Article  Google Scholar 

  39. Tang R, Shen Y, Xia M, Tua L, Luo J, Geng Y, Gao T, Zhou H, Zhao Y, Wang M (2019) A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Bioresour Technol 283:242–250. https://doi.org/10.1016/j.biortech.2019.03.058

    Article  CAS  PubMed  Google Scholar 

  40. Tekucheva DN, Fokina VV, Nikolaeva VM, Shutov AA, Donova MV (2022) Cascade biotransformation of phytosterol to testosterone by Mycolicibacterium neoaurum VKM Ас-1815D and Nocardioides simplex VKM Ас-2033D Strains. Microbiology 91:303–312. https://doi.org/10.1134/S0026261722300099

    Article  CAS  Google Scholar 

  41. Kong K, Zhang M, Zhang H et al (2022) Structures and molecular mechanisms of action of the cholesterol C17 side-chain-degrading enzymes. Syst Microbiol Biomanuf. https://doi.org/10.1007/s43393-022-00083-x

  42. El-Naggar NEA, Soliman HM, El-Shweihy NM (2018) Extracellular cholesterol oxidase production by Streptomyces aegyptia, in vitro anticancer activities against rhabdomyosarcoma, breast cancer cell-lines and in vivo apoptosis. Sci Rep 8:2706. https://doi.org/10.1038/s41598-018-20786-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alapati K, Handanahal SS (2021) Cytotoxic activity of cholesterol oxidase produced by Streptomyces sp. AKHSS against cancerous cell lines: mechanism of action in HeLa cells. World J Microbiol Biotechnol 37:141. https://doi.org/10.1007/s11274-021-03076-5

    Article  CAS  PubMed  Google Scholar 

  44. Fokina VV, Karpov MV, Kollerov VV, Bragin EY, Epiktetov DO, Sviridov AV, Kazantsev AV, Shutov AA, Donova MV (2022) Recombinant extracellular cholesterol oxidase from Nocardioides simplex. Biochem Moscow 87:903–915. https://doi.org/10.1134/S0006297922090048

    Article  CAS  Google Scholar 

  45. Fazaeli A, Golestani A, Lakzaei M, Rasi Varaei SS, Aminian M (2019) Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS One 14(2):e0212217. https://doi.org/10.1371/journal.pone.0212217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shtratnikova VY, Sсhelkunov MI, Fokina VV, Bragin EY, Shutov AA, Donova MV (2021) Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol 21:7. https://doi.org/10.1186/s12896-021-00668-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shtratnikova VY, Schelkunov MY, Fokina VY, Bragin EY, Lobastova TG, Shutov AA, Kazantsev AV, Donova MV (2020) Genome-wide transcriptome profiling provides insight on cholesterol and lithocholate degradation mechanisms in Nocardioides simplex VKM Ac-2033D. Genes (Basel). https://doi.org/10.3390/genes11101229

  48. Mao S, Sun J, Wang L, Gao X, Liu X, Lu F, Qin H-M (2022) Mining and characterization of 3-ketosteroid-Δ1-dehydrogenases from Arthrobacter simplex genome and applications for steroid dehydrogenation. Biochem Eng J 181:108383. https://doi.org/10.1016/j.bej.2022.108383

    Article  CAS  Google Scholar 

  49. Wang Y, Zhang R, Feng J, Wu Q, Zhu D, Ma Y (2022) A new 3-ketosteroid-D1–dehydrogenase with high activity and broad substrate scope for efficient transformation of hydrocortisone at high substrate concentration. Microorganisms 10:508. https://doi.org/10.3390/microorganisms10030508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang R, Liu X (2018) Wang Y (2018) identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Microb Cell Factories 17:77. https://doi.org/10.1186/s12934-018-0916-9

    Article  CAS  Google Scholar 

  51. Rohman A, Dijkstra BW (2021) Application of microbial 3-ketosteroid Δ1-dehydrogenases in biotechnology. Biotechnol Adv 49:107751. https://doi.org/10.1016/j.biotechadv.2021.107751

    Article  CAS  PubMed  Google Scholar 

  52. D’Arcy BM, Swingle MR, Schambeau L et al (2019) Development of a synthetic 3-ketosteroid Δ1-dehydrogenase for the generation of a novel catabolic pathway enabling cholesterol degradation in human cells. Sci Rep 9:5969. https://doi.org/10.1038/s41598-019-42046-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bassanini I, Ferrandi EE, Riva S, Monti D (2020) Biocatalysis with laccases: an updated overview. Catalysts 11(1):26. https://doi.org/10.3390/catal11010026

    Article  CAS  Google Scholar 

  54. Khomutov SM, Shutov AA, Chernikh AM, Myasoedova NM, Golovleva LA, Donova MV (2016) Laccase-mediated oxyfunctionalization of 3β-hydroxy-Δ5-steroids. J Mol Catal B Enzym 123:47–52. https://doi.org/10.1016/j.molcatb.2015.11.004

    Article  CAS  Google Scholar 

  55. Khomutov S, Shutov A, Averin A, Dovbnya D, Donova M (2022) Laccase-mediated oxidation of steroid alcohols in the presence of methylated β-cyclodextrin: from inhibition to selective synthesis. J Chem Technol Biotechnol 97(5):1162–1170. https://doi.org/10.1002/jctb.7000

    Article  CAS  Google Scholar 

  56. Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y et al (2021) A dual role reductase from phytosterols catabolism enables the efficient production of valuable steroid precursors. Angew Chem Int Ed 60:5414–5420. https://doi.org/10.1002/anie.202015462

    Article  CAS  Google Scholar 

  57. Wang J, Gu XZ, He LM, Li CC, Qiu WW (2020) Synthesis of ursodeoxycholic acid from plant-source (20S)-21-hydroxy-20-methylpregn-4-en-3-one. Steroids 157:108600. https://doi.org/10.1016/j.steroids.2020.108600

    Article  CAS  PubMed  Google Scholar 

  58. Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M (2018) Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 102(19):8153–8171. https://doi.org/10.1007/s00253-018-9239-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karpov MV, Nikolaeva VM, Fokina VV, Shutov AA, Kazantsev AV, Strizhov NI, Donova MV (2022) Creation and functional analysis of Mycolicibacterium smegmatis recombinant strains carrying the bacillary cytochromes CYP106A1 and CYP106A2 genes. Appl Biochem Microbiol 58(9):947–957. https://doi.org/10.1134/S0003683822090058

    Article  CAS  Google Scholar 

  60. Munro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC (2002) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27:250–257. https://doi.org/10.1016/s0968-0004(02)02086-8

    Article  CAS  PubMed  Google Scholar 

  61. Li A, Acevedo-Rocha CG, D’Amore L, Chen J, Peng Y, Garcia-Borras M, Gao C, Zhu J, Rickerby H, Osuna S (2020) Regio- and stereoselective steroid hydroxylation at C7 by cytochrome P450 monooxygenase mutants. Angew Chem Int Ed 59:12499–12505. https://doi.org/10.1002/anie.202003139

    Article  CAS  Google Scholar 

  62. Zhao YQ, Liu YJ, Ji WT, Liu K, Gao B, Tao XY, Zhao M, Wang FQ, Wei DZ (2022) One-pot biosynthesis of 7β-hydroxyandrost-4-ene-3,17-dione from phytosterols by cofactor regeneration system in engineered Mycolicibacterium neoaurum. Microb Cell Factories 21:59. https://doi.org/10.1186/s12934-022-01786-5

    Article  CAS  Google Scholar 

  63. Strizhov N, Fokina V, Sukhodolskaya G, Dovbnya D, Karpov M, Shutov A, Novikova L, Donova M (2014) Progesterone biosynthesis by combined action of adrenal steroidogenic and mycobacterial enzymes in fast growing mycobacteria. New Biotechnol 31:67. https://doi.org/10.1016/j.nbt.2014.05.1766

    Article  Google Scholar 

  64. Kolatorova L, Vitku J, Hill M, Parizek A (2022) Progesterone: a steroid with wide range of effects in physiology as well as human medicine. Int J Mol Sci 23(14):7989. https://doi.org/10.3390/ijms23147989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu K, Wang FQ, Liu K, Zhao Y, Gao B, Tao X, Wei D (2022) Light-driven progesterone production by InP–(Mneoaurum) biohybrid system. Bioresour Bioprocess 9:93. https://doi.org/10.1186/s40643-022-00575-7

    Article  Google Scholar 

  66. Kristan K, Rižner TL (2012) Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129(1–2):79–91. https://doi.org/10.1016/j.jsbmb.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  67. Felpeto-Santero C, Galán B, García JL (2021) Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis. Microb Biotechnol 14:2514–2524. https://doi.org/10.1111/1751-7915.13735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Felpeto-Santero C, Galán B, Luengo JM, Fernández-Cañon JM, del Cerro C, Medrano FJ, García JL (2019) Identification and expression of the 11β-steroid hydroxylase from Cochliobolus lunatus in Corynebacterium glutamicum. Microbial Biotechnol 12(5):856–868. https://doi.org/10.1111/1751-7915.13428

    Article  CAS  Google Scholar 

  69. Xu S, Li Y (2020) Yeast as a promising heterologous host for steroid bioproduction. J Ind Microbiol Biotechnol 47(9–10):829–843. https://doi.org/10.1007/s10295-020-02291-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Russian Science Foundation is gratefully acknowledged for the support (grant no. 21-64-00024). The author is grateful to D. Dovbnya, A. Shutov, and A. Byakov for their assistance in preparing the manuscript and the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Donova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Donova, M.V. (2023). Current Trends and Perspectives in Microbial Bioconversions of Steroids. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics