Skip to main content

Inflammasome-Independent Roles of NLR and ALR Family Members

  • Protocol
  • First Online:
NLR Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2696))

  • 783 Accesses

Abstract

Pattern recognition receptors, including members of the NLR and ALR families, are essential for recognition of both pathogen- and host-derived danger signals. Several members of these families, including NLRP1, NLRP3, NLRC4, and AIM2, are capable of forming multiprotein complexes, called inflammasomes, that result in the activation of pro-inflammatory caspase-1. However, in addition to the formation of inflammasomes, a number of these family members exert inflammasome-independent functions. Here, we will discuss inflammasome-independent functions of NLRC4, NLRP12, and AIM2 and examine their roles in regulating innate and adaptive immune processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corridoni D, Arseneau KO, Cifone MG, Cominelli F (2014) The dual role of nod-like receptors in mucosal innate immunity and chronic intestinal inflammation. Front Immunol 10(5):317

    Google Scholar 

  2. Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA et al (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26(4):445–459

    Article  CAS  PubMed  Google Scholar 

  3. Chen G, Shaw MH, Kim Y-G, Nuñez G (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4:365–398

    Article  CAS  PubMed  Google Scholar 

  4. Zika E, Ting JP-Y (2005) Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes. Curr Opin Immunol 17(1):58–64

    Article  CAS  PubMed  Google Scholar 

  5. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  6. Tattoli I, Carneiro LA, Jéhanno M, Magalhaes JG, Shu Y, Philpott DJ et al (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9(3):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320(5876):674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allen IC (2014) Non-Inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol 5:169

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  10. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Man SM, Kanneganti T-D (2015) Regulation of inflammasome activation. Immunol Rev 265(1):6–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lupfer C, Kanneganti T-D (2013) Unsolved mysteries in NLR biology. Front Immunol 4:285

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157(5):1013–1022

    Article  CAS  PubMed  Google Scholar 

  15. Nordlander S, Pott J, Maloy KJ (2014) NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 7(4):775–785

    Article  CAS  PubMed  Google Scholar 

  16. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218

    Article  CAS  PubMed  Google Scholar 

  17. Franchi L, Stoolman J, Kanneganti T-D, Verma A, Ramphal R, Núñez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37(11):3030–3039

    Article  CAS  PubMed  Google Scholar 

  18. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204(13):3235–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai S, Batra S, Wakamatsu N, Pacher P, Jeyaseelan S (2012) NLRC4 Inflammasome-mediated production of IL-1β modulates mucosal immunity in the lung against gram-negative bacterial infection. J Immunol 188(11):5623–5635

    Article  CAS  PubMed  Google Scholar 

  20. Amer A, Franchi L, Kanneganti T-D, Body-Malapel M, Ozören N, Brady G et al (2006) Regulation of legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281(46):35217–35223

    Article  CAS  PubMed  Google Scholar 

  21. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of legionella pneumophila infection. Nat Immunol 7(3):318–325

    Article  CAS  PubMed  Google Scholar 

  22. Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F (2011) Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog 7(12):e1002452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Franchi L, Amer A, Body-Malapel M, Kanneganti T-D, Ozören N, Jagirdar R et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582

    Article  CAS  PubMed  Google Scholar 

  24. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lightfield KL, Persson J, Trinidad NJ, Brubaker SW, Kofoed EM, Sauer J-D et al (2011) Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect Immun 79(4):1606–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat Immunol 7(6):569–575

    Article  CAS  PubMed  Google Scholar 

  27. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107(7):3076–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191(8):3986–3989

    Article  CAS  PubMed  Google Scholar 

  29. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110(35):14408–14413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q et al (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350(6259):404–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y et al (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350(6259):399–404

    Article  CAS  PubMed  Google Scholar 

  33. Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E et al (2017) The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358(6365):888–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD, Manin GZ et al (2017) Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLoS Pathog 13(8):e1006502

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee BL, Mirrashidi KM, Stowe IB, Kummerfeld SK, Watanabe C, Haley B et al (2018) ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci Rep 8(1):3788

    Article  PubMed  PubMed Central  Google Scholar 

  36. Denes A, Coutts G, Lénárt N, Cruickshank SM, Pelegrin P, Skinner J et al (2015) AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A 112(13):4050–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freeman L, Guo H, David CN, Brickey WJ, Jha S, Ting JP-Y (2017) NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med 214(5):1351–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scholz H, Eder C (2017) Lysophosphatidylcholine activates caspase-1 in microglia via a novel pathway involving two inflammasomes. J Neuroimmunol 15(310):107–110

    Article  Google Scholar 

  39. Wang S, Narendran S, Hirahara S, Varshney A, Pereira F, Apicella I et al (2021) DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Sci Immunol 6(66):eabi4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu R, Truax AD, Chen L, Hu P, Li Z, Chen J et al (2015) Expression profile of innate immune receptors, NLRs and AIM2, in human colorectal cancer: correlation with cancer stages and inflammasome components. Oncotarget 6(32):33456–33469

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jin H, Kim HJ (2020) NLRC4, ASC and Caspase-1 are Inflammasome components that are mediated by P2Y2R activation in breast cancer cells. Int J Mol Sci 21(9):3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma N, Saxena S, Agrawal I, Singh S, Srinivasan V, Arvind S et al (2019) Differential expression profile of NLRs and AIM2 in glioma and implications for NLRP12 in glioblastoma. Sci Rep 9(1):8480

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kong H, Wang Y, Zeng X, Wang Z, Wang H, Xie W (2015) Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol J Int Soc Oncodev Biol Med 36(10):7501–7513

    Article  CAS  Google Scholar 

  44. Wang X, Yang C, Liao X, Han C, Yu T, Huang K et al (2017) NLRC and NLRX gene family mRNA expression and prognostic value in hepatocellular carcinoma. Cancer Med 6(11):2660–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107(50):21635–21640

    Article  PubMed  PubMed Central  Google Scholar 

  46. Allam R, Maillard MH, Tardivel A, Chennupati V, Bega H, Yu CW et al (2015) Epithelial NAIPs protect against colonic tumorigenesis. J Exp Med 212(3):369–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM et al (2016) Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun 7:13007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohashi K, Wang Z, Yang YM, Billet S, Tu W, Pimienta M et al (2019) NOD-like receptor C4 Inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatol Baltim Md 70(5):1582–1599

    Article  CAS  Google Scholar 

  49. Emran AA, Tseng H-Y, Coleman MC, Tiffen J, Cook S, McGuire HM et al (2020) Do innate killing mechanisms activated by inflammasomes have a role in treating melanoma? Pigment Cell Melanoma Res 33(5):660–670

    Article  PubMed  PubMed Central  Google Scholar 

  50. Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP et al (2016) NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest 126(10):3917–3928

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hornick EE, Dagvadorj J, Zacharias ZR, Miller AM, Langlois RA, Chen P et al (2019) Dendritic cell NLRC4 regulates influenza a virus–specific CD4+ T cell responses through FasL expression. J Clin Invest 129(7):2888–2897

    Article  PubMed  PubMed Central  Google Scholar 

  52. Williams KL, Taxman DJ, Linhoff MW, Reed W, Ting JP-Y (2003) Cutting edge: Monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J Immunol 170(11):5354–5358

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM et al (2002) PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 277(33):29874–29880

    Article  CAS  PubMed  Google Scholar 

  54. Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH et al (2012) The NLRP12 Inflammasome recognizes Yersinia pestis. Immunity 37(1):96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ataide MA, Andrade WA, Zamboni DS, Wang D, Souza M, do C, Franklin BS et al (2014) Malaria-induced NLRP12/NLRP3-dependent Caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog 10(1):e1003885

    Article  PubMed  PubMed Central  Google Scholar 

  56. Silveira TN, Gomes MTR, Oliveira LS, Campos PC, Machado GG, Oliveira SC (2017) NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus. Eur J Immunol 47(1):51–59

    Article  CAS  PubMed  Google Scholar 

  57. Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Taxman DJ et al (2007) Cutting edge: Monarch-1 suppresses non-canonical NF-κB activation and p52-dependent chemokine expression in monocytes. J Immunol 178(3):1256–1260

    Article  CAS  PubMed  Google Scholar 

  58. Zaki MH, Vogel P, Malireddi RKS, Body-Malapel M, Anand PK, Bertin J et al (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20(5):649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB Signaling. Immunity 36(5):742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P, Moore C et al (2005) The CATERPILLER protein Monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor α-, and mycobacterium tuberculosis-induced pro-inflammatory signals*. J Biol Chem 280(48):39914–39924

    Article  CAS  PubMed  Google Scholar 

  61. Arthur JC, Lich JD, Aziz RK, Kotb M, Ting JP-Y (2007) Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J Immunol Baltim Md 1950 179(9):6291–6296

    CAS  Google Scholar 

  62. Udden SN, Kwak Y-T, Godfrey V, Khan MAW, Khan S, Loof N et al (2019) NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife 8:e40396

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen L, Wilson JE, Koenigsknecht MJ, Chou W-C, Montgomery SA, Truax AD et al (2017) NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol 18(5):541–551

    Article  PubMed  PubMed Central  Google Scholar 

  64. Truax AD, Chen L, Tam JW, Cheng N, Guo H, Koblansky AA et al (2018) The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. Cell Host Microbe 24(3):364–378.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lukens JR, Gurung P, Shaw PJ, Barr MJ, Zaki MH, Brown SA et al (2015) The NLRP12 sensor negatively regulates autoinflammatory disease by modulating Interleukin-4 production in T cells. Immunity 42(4):654–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Allen IC, McElvania-TeKippe E, Wilson JE, Lich JD, Arthur JC, Sullivan JT et al (2013) Characterization of NLRP12 during the in vivo host immune response to Klebsiella pneumoniae and mycobacterium tuberculosis. PLoS One 8(4):e60842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zaki MH, Man SM, Vogel P, Lamkanfi M, Kanneganti T-D. Salmonella exploits NLRP12-dependent innate immune signaling to suppress host defenses during infection. Proc Natl Acad Sci U S A 2014 111(1):385–390

    Google Scholar 

  68. Chen S-T, Chen L, Lin DS-C, Chen S-Y, Tsao Y-P, Guo H et al (2019) NLRP12 Regulates Anti-viral RIG-I Activation via Interaction with TRIM25. Cell Host Microbe 25(4):602–616.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arthur JC, Lich JD, Ye Z, Allen IC, Gris D, Wilson JE et al (2010) Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol Baltim Md 1950 185(8):4515–4519

    CAS  Google Scholar 

  70. Zamoshnikova A, Groß CJ, Schuster S, Chen KW, Wilson A, Tacchini-Cottier F et al (2016) NLRP12 is a neutrophil-specific, negative regulator of in vitro cell migration but does not modulate LPS- or infection-induced NF-κB or ERK signalling. Immunobiology 221(2):341–346

    Article  CAS  PubMed  Google Scholar 

  71. Higashimori A, Watanabe T, Nadatani Y, Takeda S, Otani K, Tanigawa T et al (2016) Mechanisms of NLRP3 inflammasome activation and its role in NSAID-induced enteropathy. Mucosal Immunol 9(3):659–668

    Article  CAS  PubMed  Google Scholar 

  72. Ulland TK, Jain N, Hornick EE, Elliott EI, Clay GM, Sadler JJ et al (2016) Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun 7(1):13180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hornick EE, Banoth B, Miller AM, Zacharias ZR, Jain N, Wilson ME et al (2018) Nlrp12 mediates adverse neutrophil recruitment during influenza virus infection. J Immunol 200(3):1188–1197

    Article  CAS  PubMed  Google Scholar 

  74. DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA et al (1997) Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15(4):453–457

    Article  CAS  PubMed  Google Scholar 

  75. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458(7237):509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  78. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K et al (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 107(21):9771–9776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fernandes-Alnemri T, Yu J-W, Juliana C, Solorzano L, Kang S, Wu J et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M et al (2012) Critical role of AIM2 in mycobacterium tuberculosis infection. Int Immunol 24(10):637–644

    Article  CAS  PubMed  Google Scholar 

  81. Sauer J-D, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7(5):412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsuchiya K, Hara H, Kawamura I, Nomura T, Yamamoto T, Daim S et al (2010) Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with listeria monocytogenes. J Immunol Baltim Md 1950 185(2):1186–1195

    CAS  Google Scholar 

  83. Costa Franco MM, Marim F, Guimarães ES, Assis NRG, Cerqueira DM, Alves-Silva J et al (2018) Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and Inflammasome activation. J Immunol Baltim Md 1950 200(2):607–622

    CAS  Google Scholar 

  84. Cunha LD, Silva ALN, Ribeiro JM, Mascarenhas DPA, Quirino GFS, Santos LL et al (2017) AIM2 engages active but unprocessed Caspase-1 to induce noncanonical activation of the NLRP3 Inflammasome. Cell Rep 20(4):794–805

    Article  CAS  PubMed  Google Scholar 

  85. Fang R, Hara H, Sakai S, Hernandez-Cuellar E, Mitsuyama M, Kawamura I et al (2014) Type I interferon Signaling regulates activation of the absent in melanoma 2 Inflammasome during Streptococcus pneumoniae infection. Infect Immun 82(6):2310–2317

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rathinam VAK, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11(5):395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu H, Zhao M, Chang C, Chan V, Lu Q, Wu H (2021) The complex role of AIM2 in autoimmune diseases and cancers. Immun Inflamm Dis 9(3):649–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S (2013) AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol 33(5):925–937

    Article  PubMed  Google Scholar 

  89. Baum R, Sharma S, Carpenter S, Li Q-Z, Busto P, Fitzgerald KA et al (2015) Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II–deficient mice. J Immunol 194(3):873–877

    Article  CAS  PubMed  Google Scholar 

  90. Vakrakou AG, Svolaki IP, Evangelou K, Gorgoulis VG, Manoussakis MN (2020) Cell-autonomous epithelial activation of AIM2 (absent in melanoma-2) inflammasome by cytoplasmic DNA accumulations in primary Sjögren’s syndrome. J Autoimmun 108:102381

    Article  CAS  PubMed  Google Scholar 

  91. Vakrakou AG, Boiu S, Ziakas PD, Xingi E, Boleti H, Manoussakis MN (2018) Systemic activation of NLRP3 inflammasome in patients with severe primary Sjögren’s syndrome fueled by inflammagenic DNA accumulations. J Autoimmun 91:23–33

    Article  CAS  PubMed  Google Scholar 

  92. Chou W-C, Guo Z, Guo H, Chen L, Zhang G, Liang K et al (2021) AIM2 in regulatory T cells restrains autoimmune diseases. Nature 591(7849):300–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Koning HD, Bergboer JGM, van den Bogaard EH, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, Simon A et al (2012) Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions. Exp Dermatol 21(12):961–964

    Article  PubMed  Google Scholar 

  94. de Koning HD, van Vlijmen-Willems IMJJ, Zeeuwen PLJM, Blokx WAM, Schalkwijk J (2014) Absent in melanoma 2 is predominantly present in primary melanoma and primary squamous cell carcinoma, but largely absent in metastases of both tumors. J Am Acad Dermatol 71(5):1012–1015

    Article  PubMed  Google Scholar 

  95. Ma X, Guo P, Qiu Y, Mu K, Zhu L, Zhao W et al (2016) Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget 7(24):36185–36197

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chai D, Shan H, Wang G, Li H, Fang L, Song J et al (2018) AIM2 is a potential therapeutic target in human renal carcinoma and suppresses its invasion and metastasis via enhancing autophagy induction. Exp Cell Res 370(2):561–570

    Article  CAS  PubMed  Google Scholar 

  97. Chen I-F, Ou-Yang F, Hung J-Y, Liu J-C, Wang H, Wang S-C et al (2006) AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther 5(1):1–7

    Article  CAS  PubMed  Google Scholar 

  98. Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y et al (2015) Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med 21(8):906–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y et al (2019) AIM2 promotes non-small-cell lung cancer cell growth through inflammasome-dependent pathway. J Cell Physiol 234(11):20161–20173

    Article  CAS  PubMed  Google Scholar 

  100. Qi M, Dai D, Liu J, Li Z, Liang P, Wang Y et al (2020) AIM2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics. Oncogene 39(13):2707–2723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NIH grant R21 AI156919 (F.S.S.) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayyaz S. Sutterwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gupta, S., Cassel, S.L., Sutterwala, F.S. (2023). Inflammasome-Independent Roles of NLR and ALR Family Members. In: Pelegrín, P., Di Virgilio, F. (eds) NLR Proteins. Methods in Molecular Biology, vol 2696. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3350-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3350-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3349-6

  • Online ISBN: 978-1-0716-3350-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics