Skip to main content

Canonical Inflammasomes

  • Protocol
  • First Online:
NLR Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2696))

Abstract

The innate immune response represents the first line of host defense, and it is able to detect pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) through a variety of pattern recognition receptors (PRRs). Among these PRRs, certain cytosolic receptors of the NLRs family (specifically NLRP1, NLRP3, NLRC4, and NAIP) or those containing at least a pyrin domain (PYD) such as pyrin and AIM2, activate the multimeric complex known as inflammasome, and its effector enzyme caspase-1. The caspase-1 induces the proteolytic maturation of the pro-inflammatory cytokines IL-1ß and IL-18, as well as the pore-forming protein gasdermin D (GSDMD). GSDMD is responsible for the release of the two cytokines and the induction of lytic and inflammatory cell death known as pyroptosis. Each inflammasome receptor detects specific stimuli, either directly or indirectly, thereby enhancing the cell’s ability to sense infections or homeostatic disturbances. In this chapter, we present the activation mechanism of the so-called “canonical” inflammasomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Christgen S, Place DE, Kanneganti T-D (2020) Toward targeting inflammasomes: insights into their regulation and activation. Cell Res 30(4):315–327. https://doi.org/10.1038/s41422-020-0295-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lu A, Magupalli Venkat G, Ruan J, Yin Q, Atianand Maninjay K, Vos MR et al (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206. https://doi.org/10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stutz A, Horvath GL, Monks BG, Latz E (2013) ASC speck formation as a readout for inflammasome activation. Methods Mol Biol 1040:91 –101. https://doi.org/10.1007/978-1-62703-523-1_8

    Article  CAS  PubMed  Google Scholar 

  4. Chan AH, Schroder K (2019) Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med 217(1):e20190314. https://doi.org/10.1084/jem.20190314

    Article  CAS  PubMed Central  Google Scholar 

  5. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  6. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  7. Taabazuing CY, Griswold AR, Bachovchin DA (2020) The NLRP1 and CARD8 inflammasomes. Immunol Rev 297(1):13–25. https://doi.org/10.1111/imr.12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu CH, Moecking J, Geyer M, Masters SL (2018) Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J Mol Biol 430(2):142–152. https://doi.org/10.1016/j.jmb.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  9. Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K et al (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via Inflammasome activation. Cell 167(1):187–202.e17. https://doi.org/10.1016/j.cell.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE (2016) Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 Inflammasome activation. PLoS Pathog 12(12):e1006052. https://doi.org/10.1371/journal.ppat.1006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswami C et al (2012) Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 287(30):25030–25037. https://doi.org/10.1074/jbc.M112.378323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science (New York, NY) 364(6435). https://doi.org/10.1126/science.aau1330

  13. Lopes Fischer N, Naseer N, Shin S, Brodsky IE (2020) Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 5(1):14–26. https://doi.org/10.1038/s41564-019-0623-2

    Article  CAS  PubMed  Google Scholar 

  14. Robinson KS, Teo DET, Tan KS, Toh GA, Ong HH, Lim CK et al (2020) Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science (New York, NY) 370(6521). https://doi.org/10.1126/science.aay2002

  15. Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD (2021) Diverse viral proteases activate the NLRP1 inflammasome. elife:10. https://doi.org/10.7554/eLife.60609

  16. Bauernfried S, Scherr MJ, Pichlmair A, Duderstadt KE, Hornung V (2021) Human NLRP1 is a sensor for double-stranded RNA. Science (New York, NY) 371(6528). https://doi.org/10.1126/science.abd0811

  17. Zhong FL, Robinson K, Teo DET, Tan KY, Lim C, Harapas CR et al (2018) Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. 293(49):18864–18878. https://doi.org/10.1074/jbc.RA118.004350

  18. Griswold AR, Ball DP, Bhattacharjee A, Chui AJ, Rao SD, Taabazuing CY et al (2019) DPP9’s enzymatic activity and not its binding to CARD8 inhibits Inflammasome activation. ACS Chem Biol 14(11):2424–2429. https://doi.org/10.1021/acschembio.9b00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gai K, Okondo MC, Rao SD, Chui AJ, Ball DP, Johnson DC et al (2019) DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death Dis 10(8):587. https://doi.org/10.1038/s41419-019-1817-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Costa FRC, Leite JA, Rassi DM, da Silva JF, Elias-Oliveira J, Guimarães JB et al (2021) NLRP1 acts as a negative regulator of Th17 cell programming in mice and humans with autoimmune diabetes. Cell Rep 35(8). https://doi.org/10.1016/j.celrep.2021.109176

  21. Ting JP, Duncan JA, Lei Y (2010) How the noninflammasome NLRs function in the innate immune system. Science (New York, NY) 327(5963):286–290. https://doi.org/10.1126/science.1184004

    Article  CAS  Google Scholar 

  22. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F et al (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55(5):443–452. https://doi.org/10.1369/jhc.6A7101.2006

    Article  CAS  PubMed  Google Scholar 

  23. Okondo MC, Rao SD, Taabazuing CY, Chui AJ, Poplawski SE, Johnson DC et al (2018) Inhibition of Dpp8/9 activates the Nlrp1b Inflammasome. Cell Chem Biol 25(3):262–7.e5. https://doi.org/10.1016/j.chembiol.2017.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17(13):1140–1145. https://doi.org/10.1016/j.cub.2007.05.074

    Article  CAS  PubMed  Google Scholar 

  25. Yap JKY, Pickard BS, Chan EWL, Gan SY (2019) The role of neuronal NLRP1 Inflammasome in Alzheimer’s disease: bringing neurons into the Neuroinflammation game. Mol Neurobiol 56(11):7741–7753. https://doi.org/10.1007/s12035-019-1638-7

    Article  CAS  PubMed  Google Scholar 

  26. Sand J, Haertel E, Biedermann T, Contassot E, Reichmann E, French LE et al (2018) Expression of inflammasome proteins and inflammasome activation occurs in human, but not in murine keratinocytes. Cell Death Dis 9(2):24. https://doi.org/10.1038/s41419-017-0009-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 Inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hayward JA, Mathur A, Ngo C, Man SM (2018) Cytosolic recognition of microbes and pathogens: Inflammasomes in action. Microbiol Mol Biol Rev 82(4). https://doi.org/10.1128/mmbr.00015-18

  29. Sharma M, de Alba E (2021) Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020872

  30. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q et al (2019) Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570(7761):338–343. https://doi.org/10.1038/s41586-019-1295-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD et al (2007) The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in north American patients and a new cryopyrin model. Arthritis Rheum 56(4):1273–1285. https://doi.org/10.1002/art.22491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hafner-Bratkovič I, Sušjan P, Lainšček D, Tapia-Abellán A, Cerović K, Kadunc L et al (2018) NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun 9(1):5182. https://doi.org/10.1038/s41467-018-07573-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mayor A, Martinon F, De Smedt T, Pétrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8(5):497–503. https://doi.org/10.1038/ni1459

    Article  CAS  PubMed  Google Scholar 

  34. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P, Alice in caspase land. (2002) A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361. https://doi.org/10.1038/sj.cdd.4400989

    Article  CAS  PubMed  Google Scholar 

  35. Lopez-Castejon G (2020) Control of the inflammasome by the ubiquitin system. FEBS J 287(1):11–26. https://doi.org/10.1111/febs.15118

    Article  CAS  PubMed  Google Scholar 

  36. He Y, Zeng MY, Yang D, Motro B, Núñez G (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530(7590):354–357. https://doi.org/10.1038/nature16959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niu T, De Rosny C, Chautard S, Rey A, Patoli D, Groslambert M et al (2021) NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat Commun 12(1):5862. https://doi.org/10.1038/s41467-021-26142-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weber ANR, Bittner ZA, Shankar S, Liu X, Chang TH, Jin T et al (2020) Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci 133(23). https://doi.org/10.1242/jcs.248344

  39. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47(1):15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  40. Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M et al (2018) The TWIK2 potassium Efflux Channel in macrophages mediates NLRP3 Inflammasome-induced inflammation. Immunity 49(1):56–65.e4. https://doi.org/10.1016/j.immuni.2018.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mayes-Hopfinger L, Enache A, Xie J, Huang C-L, Köchl R, Tybulewicz VLJ et al (2021) Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun 12(1):4546. https://doi.org/10.1038/s41467-021-24784-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang L, Negro R, Wu H (2020) TRPM2, linking oxidative stress and ca(2+) permeation to NLRP3 inflammasome activation. Curr Opin Immunol 62:131 –135. https://doi.org/10.1016/j.coi.2020.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S et al (2020) Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol 21(1):30–41. https://doi.org/10.1038/s41590-019-0548-1

    Article  CAS  PubMed  Google Scholar 

  44. Green JP, Yu S, Martín-Sánchez F, Pelegrin P, Lopez-Castejon G, Lawrence CB et al (2018) Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc Natl Acad Sci U S A 115(40):E9371–E9e80. https://doi.org/10.1073/pnas.1812744115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohanty A, Tiwari-Pandey R, Pandey NR (2019) Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal 13(3):303–318. https://doi.org/10.1007/s12079-019-00507-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meyers AK, Zhu X (2020) The NLRP3 Inflammasome: metabolic regulation and contribution to Inflammaging. Cell 9(8):1808. https://doi.org/10.3390/cells9081808

    Article  CAS  Google Scholar 

  47. Hughes MM, O’Neill LAJ (2018) Metabolic regulation of NLRP3. Immunol Rev 281(1):88–98. https://doi.org/10.1111/imr.12608

    Article  CAS  PubMed  Google Scholar 

  48. Chevriaux A, Pilot T, Derangère V, Simonin H, Martine P, Chalmin F et al (2020) Cathepsin B is required for NLRP3 Inflammasome activation in macrophages, through NLRP3. Interaction:8. https://doi.org/10.3389/fcell.2020.00167

  49. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245):433–436. https://doi.org/10.1038/nature07965

    Article  CAS  PubMed  Google Scholar 

  50. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121. https://doi.org/10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  51. Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A (2015) Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 6(1):8761. https://doi.org/10.1038/ncomms9761

    Article  CAS  PubMed  Google Scholar 

  52. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F et al (2016) Human monocytes engage an alternative Inflammasome pathway. Immunity 44(4):833–846. https://doi.org/10.1016/j.immuni.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  53. Tyrkalska SD, Candel S, Mulero V (2021) The neutrophil inflammasome. Dev Comp Immunol 115:103874 . https://doi.org/10.1016/j.dci.2020.103874

    Article  CAS  PubMed  Google Scholar 

  54. Nakamura Y, Kambe N, Saito M, Nishikomori R, Kim Y-G, Murakami M et al (2009) Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 206(5):1037–1046. https://doi.org/10.1084/jem.20082179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonnekoh H, Scheffel J, Kambe N, Krause K (2018) The role of mast cells in autoinflammation. Immunol Rev 282(1):265–275. https://doi.org/10.1111/imr.12633

    Article  CAS  PubMed  Google Scholar 

  56. Kumar H, Kumagai Y, Tsuchida T, Koenig PA, Satoh T, Guo Z et al (2009) Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal beta-glucan. J Immunol (Baltimore, Md: 1950) 183(12):8061–8067. https://doi.org/10.4049/jimmunol.0902477

    Article  CAS  Google Scholar 

  57. Ali MF, Dasari H, Van Keulen VP, Carmona EM (2017) Canonical stimulation of the NLRP3 Inflammasome by fungal antigens links innate and adaptive B-lymphocyte responses by modulating IL-1β and IgM production. Front Immunol 8:1504 . https://doi.org/10.3389/fimmu.2017.01504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C et al (2016) T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science (New York, NY) 352(6292):aad1210. https://doi.org/10.1126/science.aad1210

    Article  CAS  Google Scholar 

  59. Arbore G, West EE, Rahman J, Le Friec G, Niyonzima N, Pirooznia M (2018) Complement receptor CD46 co-stimulates optimal human CD8(+) T cell effector function via fatty acid metabolism. 9(1):4186. https://doi.org/10.1038/s41467-018-06706-z

  60. Fong JJ, Tsai CM, Saha S, Nizet V, Varki A, Bui JD (2018) Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells. Proc Natl Acad Sci U S A 115(41):10410–10415. https://doi.org/10.1073/pnas.1804108115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hottz ED, Monteiro APT, Bozza FA, Bozza PT (2015) Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases? Mediat Inflamm 2015:435783 . https://doi.org/10.1155/2015/435783

    Article  CAS  Google Scholar 

  62. He Y, Franchi L, Núñez G (2013) TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. (Baltimore, Md: 1950) 190(1):334–339. https://doi.org/10.4049/jimmunol.1202737

    Article  CAS  PubMed  Google Scholar 

  63. Tourneur L, Witko-Sarsat V (2019) Inflammasome activation: neutrophils go their own way. 105(3):433–436. https://doi.org/10.1002/JLB.3CE1118-433R

  64. Bruchard M, Rebe C, Derangere V, Togbe D, Ryffel B, Boidot R et al (2015) The receptor NLRP3 is a transcriptional regulator of TH2 differentiation 16(8):859–870. https://doi.org/10.1038/ni.3202

    Article  CAS  Google Scholar 

  65. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E et al (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20(6):375–388. https://doi.org/10.1038/s41577-020-0285-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512(7512):69–73. https://doi.org/10.1038/nature13322

    Article  CAS  PubMed  Google Scholar 

  67. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. (Baltimore, Md: 1950) 189(8):4175–4181. https://doi.org/10.4049/jimmunol.1201516

    Article  CAS  PubMed  Google Scholar 

  68. Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC (2003) The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J 373(Pt 1):101–113. https://doi.org/10.1042/bj20030304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dorfleutner A, Bryan NB, Talbott SJ, Funya KN, Rellick SL, Reed JC et al (2007) Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun 75(3):1484–1492. https://doi.org/10.1128/iai.01315-06

    Article  CAS  PubMed  Google Scholar 

  70. Eren E, Berber M, Özören N (2017) NLRC3 protein inhibits inflammation by disrupting NALP3 inflammasome assembly via competition with the adaptor protein ASC for pro-caspase-1 binding. J Biol Chem 292(30):12691–12701. https://doi.org/10.1074/jbc.M116.769695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seok JK, Kang HC, Cho Y-Y, Lee HS, Lee JY (2021) Regulation of the NLRP3 Inflammasome by post-translational modifications and. Small Molecules 11. https://doi.org/10.3389/fimmu.2020.618231

  72. Jackson JT, Mulazzani E, Nutt SL, Masters SL (2021) The role of PLCγ2 in immunological disorders, cancer, and neurodegeneration. J Biol Chem 297(2). https://doi.org/10.1016/j.jbc.2021.100905

  73. Tang J, Tu S, Lin G, Guo H, Yan C, Liu Q et al (2020) Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med 217(4). https://doi.org/10.1084/jem.20182091

  74. Wan P, Zhang Q, Liu W, Jia Y, Ai S, Wang T et al (2019) Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation. FASEB J 33(4):5793–5807. https://doi.org/10.1096/fj.201801681R

    Article  CAS  PubMed  Google Scholar 

  75. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 Inflammasome. Cell 160(1):62–73. https://doi.org/10.1016/j.cell.2014.11.047

    Article  CAS  PubMed  Google Scholar 

  76. Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA et al (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol 14(1):52–60. https://doi.org/10.1038/ni.2474

    Article  CAS  PubMed  Google Scholar 

  77. Sokolowska M, Chen LY, Liu Y, Martinez-Anton A, Qi HY, Logun C et al (2015) Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J Immunol (Baltimore, Md: 1950) 194(11):5472–5487. https://doi.org/10.4049/jimmunol.1401343

    Article  CAS  Google Scholar 

  78. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R (2017) Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science (New York, NY) 356(6337):513–519. https://doi.org/10.1126/science.aal3535

    Article  CAS  Google Scholar 

  79. Salina A, Brandt S, Medeiros AI, Serezani H (2019) Leukotriene B4 is required for inflammasome activation. J Immunol, Suppl 1 202:183 .17

    Google Scholar 

  80. Segovia M, Russo S, Jeldres M, Mahmoud YD, Perez V, Duhalde M et al (2019) Targeting TMEM176B enhances antitumor immunity and augments the efficacy of immune checkpoint blockers by unleashing Inflammasome activation. Cancer Cell 35(5):767–81.e6. https://doi.org/10.1016/j.ccell.2019.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozören N, Jagirdar R et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582. https://doi.org/10.1038/ni1346

    Article  CAS  PubMed  Google Scholar 

  82. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. https://doi.org/10.1038/nature02664

    Article  CAS  PubMed  Google Scholar 

  83. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575. https://doi.org/10.1038/ni1344

    Article  CAS  PubMed  Google Scholar 

  84. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595. https://doi.org/10.1038/nature10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lightfield KL, Persson J, Trinidad NJ, Brubaker SW, Kofoed EM, Sauer JD et al (2011) Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect Immun 79(4):1606–1614. https://doi.org/10.1128/iai.01187-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  87. Diebolder CA, Halff EF, Koster AJ, Huizinga EG, Koning RI (2015) Cryoelectron tomography of the NAIP5/NLRC4 Inflammasome: implications for NLR activation. Structure (London, England: 1993) 23(12):2349–2357. https://doi.org/10.1016/j.str.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  88. Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y et al (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science (New York, NY) 350(6259):399–404. https://doi.org/10.1126/science.aac5489

    Article  CAS  Google Scholar 

  89. Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q et al (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science (New York, NY) 350(6259):404–409. https://doi.org/10.1126/science.aac5789

    Article  CAS  Google Scholar 

  90. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci 110(35):14408. https://doi.org/10.1073/pnas.1306376110

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kortmann J, Brubaker SW, Monack DM (2015) Cutting edge: Inflammasome activation in primary human macrophages is dependent on Flagellin. J Immunol:1403100. https://doi.org/10.4049/jimmunol.1403100

  92. Wang SB, Narendran S, Hirahara S, Varshney A, Pereira F, Apicella I et al (2021) DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Science Immunol 6(66):eabi4493. https://doi.org/10.1126/sciimmunol.abi4493

    Article  CAS  Google Scholar 

  93. Man SM, Hopkins LJ, Nugent E, Cox S, Glück IM, Tourlomousis P et al (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci 111(20):7403. https://doi.org/10.1073/pnas.1402911111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Haloupek N, Grob P, Tenthorey J, Vance RE, Nogales E (2019) Cryo-EM studies of NAIP-NLRC4 inflammasomes. Methods Enzymol 625:177 –204. https://doi.org/10.1016/bs.mie.2019.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M et al (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490(7421):539–542. https://doi.org/10.1038/nature11429

    Article  CAS  PubMed  Google Scholar 

  96. Liu W, Liu X, Li Y, Zhao J, Liu Z, Hu Z et al (2017) LRRK2 promotes the activation of NLRC4 inflammasome during salmonella Typhimurium infection. J Exp Med 214(10):3051–3066. https://doi.org/10.1084/jem.20170014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li Y, Fu T-M, Lu A, Witt K, Ruan J, Shen C et al (2018) Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc Natl Acad Sci 115(43):10845. https://doi.org/10.1073/pnas.1810524115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG et al (2011) Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 13(5):540–549. https://doi.org/10.1016/j.cmet.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N et al (2012) Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490(7418):107–111. https://doi.org/10.1038/nature11351

    Article  CAS  Google Scholar 

  100. Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA, Bryant CE (2013) Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production. J Immunol. (Baltimore, Md: 1950) 191(10):5239–5246. https://doi.org/10.4049/jimmunol.1301581

    Article  CAS  PubMed  Google Scholar 

  101. Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD, Manin GZ et al (2017) Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLoS Pathog 13(8):e1006502. https://doi.org/10.1371/journal.ppat.1006502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY et al (2017) NAIP-NLRC4 Inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of Caspase-1 and -8. Immunity 46(4):649–659. https://doi.org/10.1016/j.immuni.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Semper RP, Vieth M, Gerhard M, Mejías-Luque R (2019) Helicobacter pylori exploits the NLRC4 inflammasome to dampen host defenses. J Immunol 203(8):2183. https://doi.org/10.4049/jimmunol.1900351

    Article  CAS  PubMed  Google Scholar 

  104. Thomas CJ, Schroder K (2013) Pattern recognition receptor function in neutrophils. Trends Immunol 34(7):317–328. https://doi.org/10.1016/j.it.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  105. Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C (2021) NLRC4 Inflammasome-mediated regulation of eosinophilic functions. Immune Netw 21(6):e42-e. https://doi.org/10.4110/in.2021.21.e42

    Article  Google Scholar 

  106. Gutierrez O, Pipaon C, Fernandez-Luna JL (2004) Ipaf is upregulated by tumor necrosis factor-alpha in human leukemia cells. FEBS Lett 568(1–3):79–82. https://doi.org/10.1016/j.febslet.2004.04.095

    Article  CAS  PubMed  Google Scholar 

  107. Sadasivam S, Gupta S, Radha V, Batta K, Kundu TK, Swarup G (2005) Caspase-1 activator Ipaf is a p53-inducible gene involved in apoptosis. Oncogene 24(4):627–636. https://doi.org/10.1038/sj.onc.1208201

    Article  CAS  PubMed  Google Scholar 

  108. Nordlander S, Pott J, Maloy KJ (2014) NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol 7(4):775–785. https://doi.org/10.1038/mi.2013.95

    Article  CAS  PubMed  Google Scholar 

  109. Hausmann A, Böck D, Geiser P, Berthold DL, Fattinger SA, Furter M et al (2020) Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen salmonella Typhimurium due to site-specific bacterial PAMP expression. Mucosal Immunol 13(3):530–544. https://doi.org/10.1038/s41385-019-0247-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP et al (2016) NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest 126(10):3917–3928. https://doi.org/10.1172/JCI86953

    Article  PubMed  PubMed Central  Google Scholar 

  111. DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA et al (1997) Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15(4):453–457. https://doi.org/10.1038/sj.onc.1201206

    Article  CAS  PubMed  Google Scholar 

  112. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458(7237):514–518. https://doi.org/10.1038/nature07725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fernandes-Alnemri T, Yu J-W, Juliana C, Solorzano L, Kang S, Wu J et al (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393. https://doi.org/10.1038/ni.1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10(3):266–272. https://doi.org/10.1038/ni.1702

    Article  CAS  PubMed  Google Scholar 

  115. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science (New York, NY) 323(5917):1057–1060. https://doi.org/10.1126/science.1169841

    Article  CAS  Google Scholar 

  116. Lugrin J, Martinon F (2018) The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. 281(1):99–114. https://doi.org/10.1111/imr.12618

  117. Sharma BR, Karki R, Kanneganti T-D (2019) Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol 49(11):1998–2011. https://doi.org/10.1002/eji.201848070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kumari P, Russo AJ, Shivcharan S, Rathinam VA (2020) AIM2 in health and disease: Inflammasome and beyond. Immunol Rev 297(1):83–95. https://doi.org/10.1111/imr.12903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rathinam VAK, Chan FK (2018) Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med 24(3):304–318. https://doi.org/10.1016/j.molmed.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M et al (2012) Critical role of AIM2 in mycobacterium tuberculosis infection. Int Immunol 24(10):637–644. https://doi.org/10.1093/intimm/dxs062

    Article  CAS  PubMed  Google Scholar 

  121. Hanamsagar R, Aldrich A, Kielian T (2014) Critical role for the AIM2 inflammasome during acute CNS bacterial infection. 129(4):704–711. https://doi.org/10.1111/jnc.12669

  122. Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S et al (2011) Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol 187(9):4890. https://doi.org/10.4049/jimmunol.1100381

    Article  CAS  PubMed  Google Scholar 

  123. Kalantari P, DeOliveira RB, Chan J, Corbett Y, Rathinam V, Stutz A et al (2014) Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep 6(1):196–210. https://doi.org/10.1016/j.celrep.2013.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR et al (2019) Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J 38(13):e100926. https://doi.org/10.15252/embj.2018100926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Reinholz M, Kawakami Y, Salzer S, Kreuter A, Dombrowski Y, Koglin S et al (2013) HPV16 activates the AIM2 inflammasome in keratinocytes. Arch Dermatol Res 305(8):723–732. https://doi.org/10.1007/s00403-013-1375-0

    Article  CAS  PubMed  Google Scholar 

  126. Yogarajah T, Ong KC, Perera D, Wong KT (2017) AIM2 Inflammasome-mediated Pyroptosis in enterovirus A71-infected neuronal cells restricts viral replication. Sci Rep 7(1):5845. https://doi.org/10.1038/s41598-017-05589-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ekchariyawat P, Hamel R, Bernard E, Wichit S, Surasombatpattana P, Talignani L et al (2015) Inflammasome signaling pathways exert antiviral effect against chikungunya virus in human dermal fibroblasts. Infect Genet Evol 32:401 –408. https://doi.org/10.1016/j.meegid.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  128. Man SM, Karki R, Kanneganti TD (2016) AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 46(2):269–280. https://doi.org/10.1002/eji.201545839

    Article  CAS  PubMed  Google Scholar 

  129. Wang B, Tian Y, Yin Q (2019) AIM2 Inflammasome assembly and Signaling. Adv Exp Med Biol 1172:143 –155. https://doi.org/10.1007/978-981-13-9367-9_7

    Article  CAS  PubMed  Google Scholar 

  130. Wang B, Yin Q (2017) AIM2 inflammasome activation and regulation: a structural perspective. J Struct Biol 200(3):279–282. https://doi.org/10.1016/j.jsb.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS et al (2012) AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19(10):1709–1721. https://doi.org/10.1038/cdd.2012.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. El-Zaatari M, Bishu S, Zhang M, Grasberger H, Hou G, Haley H et al (2020) Aim2-mediated/IFN-β-independent regulation of gastric metaplastic lesions via CD8+ T cells. JCI Insight 5(5). https://doi.org/10.1172/jci.insight.94035

  133. Svensson A, Patzi Churqui M, Schlüter K, Lind L, Eriksson K (2017) Maturation-dependent expression of AIM2 in human B-cells. PLoS One 12(8):e0183268-e. https://doi.org/10.1371/journal.pone.0183268

    Article  CAS  Google Scholar 

  134. Harris J, Lang T, Thomas JPW, Sukkar MB, Nabar NR, Kehrl JH (2017) Autophagy and inflammasomes. Mol Immunol 86:10 –15. https://doi.org/10.1016/j.molimm.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  135. Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H et al (2016) TRIM11 suppresses AIM2 Inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 16(7):1988–2002. https://doi.org/10.1016/j.celrep.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  136. Rodrigue-Gervais IG, Doiron K, Champagne C, Mayes L, Leiva-Torres GA, Vanié P et al (2018) The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Sci Rep 8(1):8446. https://doi.org/10.1038/s41598-018-26603-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I (2019) The pyrin Inflammasome in health and disease. Front Immunol 10:1745 . https://doi.org/10.3389/fimmu.2019.01745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ et al (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. J Proc Natl Acad Sci 103(26):9982–9987. https://doi.org/10.1073/pnas.0602081103

  139. Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD et al (2007) The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14(8):1457–1466. https://doi.org/10.1038/sj.cdd.4402142

    Article  CAS  PubMed  Google Scholar 

  140. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP et al (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11(3):591–604. https://doi.org/10.1016/s1097-2765(03)00056-x

    Article  CAS  PubMed  Google Scholar 

  141. Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S et al (2006) Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ 13(2):236–249. https://doi.org/10.1038/sj.cdd.4401734

    Article  CAS  PubMed  Google Scholar 

  142. Xu H, Yang J, Gao W, Li L, Li P, Zhang L et al (2014) Innate immune sensing of bacterial modifications of rho GTPases by the pyrin inflammasome. Nature 513(7517):237–241. https://doi.org/10.1038/nature13449

    Article  CAS  PubMed  Google Scholar 

  143. Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17(8):914–921. https://doi.org/10.1038/ni.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu J-W, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L et al (2007) Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 28(2):214–227. https://doi.org/10.1016/j.molcel.2007.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Starnes TW, Bennin DA, Bing X, Eickhoff JC, Grahf DC, Bellak JM et al (2014) The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 123(17):2703–2714. https://doi.org/10.1182/blood-2013-07-516948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Pontillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leal, V., Pontillo, A. (2023). Canonical Inflammasomes. In: Pelegrín, P., Di Virgilio, F. (eds) NLR Proteins. Methods in Molecular Biology, vol 2696. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3350-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3350-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3349-6

  • Online ISBN: 978-1-0716-3350-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics