Skip to main content

NetCleave: An Open-Source Algorithm for Predicting C-Terminal Antigen Processing for MHC-I and MHC-II

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

Abstract

T cell epitopes presented on the surface of mammalian cells are subjected to a complex network of antigen processing and presentation. Among them, C-terminal antigen processing constitutes one of the main bottlenecks for the generation of epitopes, as it defines the C-terminal end of the final epitope and delimits the peptidome that will be presented downstream. Previously (Amengual-Rigo and Guallar, Sci Rep 111(11):1–8, 2021), we demonstrated that NetCleave stands out as one of the best algorithms for the prediction of C-terminal processing, which in its turn can be crucial to design peptide-based vaccination strategies. In this chapter, we provide a pipeline to exploit the full capabilities of NetCleave, an open-source and retrainable algorithm for predicting the C-terminal antigen processing for the MHC-I and MHC-II pathways.

Roc Farriol-Duran and Marina Vallejo-Vallés are co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Komanduri KV (2018) Divining T-cell targets for cancer immunotherapy. Blood 132:1861–1863. https://doi.org/10.1182/blood-2018-09-873588

    Article  PubMed  Google Scholar 

  2. Ali Awadelkareem E, Osman Mohammed N, Bakor Mohammed Gaafar B, AwadElkariem Ali S (2020) Epitope-based peptide vaccine design against spike protein (S) of novel coronavirus (2019-nCoV): an immunoinformatics approach. https://doi.org/10.21203/rs.3.rs-30076/v1

  3. Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee S-S, Chakraborty C (2020) Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): immunoinformatics approach. J Med Virol 92:618. https://doi.org/10.1002/jmv.25736

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moise L, Buller RM, Schriewer J, Lee J, Frey SE, Weiner DB, Martin W, De Groot AS (2011) VennVax, a DNA-prime, peptide-boost multi-T-cell epitope poxvirus vaccine, induces protective immunity against vaccinia infection by T cell response alone. Vaccine 29:501–511. https://doi.org/10.1016/j.vaccine.2010.10.064

    Article  PubMed  Google Scholar 

  5. Walter S (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254. https://doi.org/10.1038/nm.2883

    Article  PubMed  Google Scholar 

  6. Lázaro S, Gamarra D, Del Val M (2015) Proteolytic enzymes involved in MHC class I antigen processing: a guerrilla army that partners with the proteasome. Mol Immunol 68:72–76. https://doi.org/10.1016/j.molimm.2015.04.014

    Article  PubMed  Google Scholar 

  7. Brutkiewicz RR (2016) Cell signaling pathways that regulate antigen presentation. J Immunol 197:2971–2979. https://doi.org/10.4049/jimmunol.1600460

    Article  PubMed  Google Scholar 

  8. Gfeller D, Bassani-Sternberg M (2018) Predicting antigen presentation—what could we learn from a million peptides? Front Immunol 9:1716. https://doi.org/10.3389/fimmu.2018.01716

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, Akutsu T, Smith AI, Li J, Rossjohn J, Purcell AW, Song J (2020) A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief Bioinform 21:1119–1135. https://doi.org/10.1093/bib/bbz051

    Article  PubMed  PubMed Central  Google Scholar 

  10. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48:W449–W454. https://doi.org/10.1093/nar/gkaa379

    Article  PubMed  PubMed Central  Google Scholar 

  11. O’Donnell TJ, Rubinsteyn A, Laserson U (2020) MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst 11:42–48.e7. https://doi.org/10.1016/j.cels.2020.06.010

    Article  PubMed  Google Scholar 

  12. Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak HS, Gannon PO, Kandalaft LE, Coukos G, Gfeller D (2017) Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol 13:e1005725. https://doi.org/10.1371/journal.pcbi.1005725

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sørensen M, Nielsen M, Buus S (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416. https://doi.org/10.1002/eji.201141774

    Article  PubMed  Google Scholar 

  14. Gomez-Perosanz M, Ras-Carmona A, Reche PA (2020) PCPS: a web server to predict proteasomal cleavage sites. Methods Mol Biol 2131:399–406. https://doi.org/10.1007/978-1-0716-0389-5_23

    Article  PubMed  Google Scholar 

  15. Jørgensen KW, Rasmussen M, Buus S, Nielsen M (2014) Net MHC stab – predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141:18–26. https://doi.org/10.1111/imm.12160

    Article  PubMed  Google Scholar 

  16. Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, Buus S (2016) Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol 197:1517–1524. https://doi.org/10.4049/jimmunol.1600582

    Article  PubMed  Google Scholar 

  17. Besser H, Louzoun Y (2018) Cross-modality deep learning-based prediction of TAP binding and naturally processed peptide. Immunogenetics 70:419–428. https://doi.org/10.1007/s00251-018-1054-6

    Article  PubMed  Google Scholar 

  18. Murata S, Takahama Y, Kasahara M, Tanaka K (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 19:923–931. https://doi.org/10.1038/s41590-018-0186-z

    Article  PubMed  Google Scholar 

  19. Neefjes J, Jongsma MLM, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11:823–836. https://doi.org/10.1038/nri3084

    Article  PubMed  Google Scholar 

  20. Nielsen M, Lundegaard C, Lund O, Keşmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57:33–41. https://doi.org/10.1007/s00251-005-0781-7

    Article  PubMed  Google Scholar 

  21. Hakenberg J, Nussbaum AK, Schild H, Rammensee H-G, Kuttler C, Holzhütter H-G, Kloetzel P-M, Kaufmann SHE, Mollenkopf H-J (2003) MAPPP: MHC class I antigenic peptide processing prediction. Appl Bioinformatics 2:155–158

    PubMed  Google Scholar 

  22. Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53:87–94. https://doi.org/10.1007/s002510100300

    Article  PubMed  Google Scholar 

  23. Amengual-Rigo P, Guallar V (2021) NetCleave: an open-source algorithm for predicting C-terminal antigen processing for MHC-I and MHC-II. Sci Rep 111(11):1–8. https://doi.org/10.1038/s41598-021-92632-y

    Article  Google Scholar 

  24. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343. https://doi.org/10.1093/nar/gky1006

    Article  PubMed  Google Scholar 

  25. Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y (2022) Prevention and treatment of monkeypox. Drugs 82:957–963. https://doi.org/10.1007/s40265-022-01742-y

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marcu A, Bichmann L, Kuchenbecker L, Kowalewski DJ, Freudenmann LK, Backert L, Mühlenbruch L, Szolek A, Lübke M, Wagner P, Engler T, Matovina S, Wang J, Hauri-Hohl M, Martin R, Kapolou K, Walz JS, Velz J, Moch H, Regli L, Silginer M, Weller M, Löffler MW, Erhard F, Schlosser A, Kohlbacher O, Stevanović S, Rammensee H-G, Neidert MC (2021) HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy. J Immunother Cancer 9:e002071. https://doi.org/10.1136/jitc-2020-002071

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Guallar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Farriol-Duran, R., Vallejo-Vallés, M., Amengual-Rigo, P., Floor, M., Guallar, V. (2023). NetCleave: An Open-Source Algorithm for Predicting C-Terminal Antigen Processing for MHC-I and MHC-II. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics