Skip to main content

Ribosomal Profiling by Gradient Fractionation of Cell Lysates

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2666))

Abstract

Ribosomal profiling is a widely used technique for deep sequencing of ribosome-protected mRNA and for measuring ribosome status in cells. It is a powerful method that is typically employed for monitoring and measuring protein translation status and ribosome activity. Also, it has been used for monitoring the ribosomal stress-responsive events in the ribosome activity. Furthermore, this approach enables understanding of translational regulation, which is invisible in most proteomic approaches. Moreover, this method is known as an important approach for biological discovery such as identification of translation products. Hence, this methodology will be useful for studying cellular events engaging in ribosome assembly, ribosome biogenesis, ribosome activity, translation during the cell cycle, cell proliferation, and growth as well as the ribosomal stress response in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang F, Hamanaka RB, Bobrovnikova-Marjon E, Gordan JD, Dai MS, Lu H, Simon MC, Diehl JA (2006) Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest. J Biol Chem 281(40):30036–30045. https://doi.org/10.1074/jbc.M604674200

    Article  CAS  PubMed  Google Scholar 

  2. Donati G, Montanaro L, Derenzini M (2012) Ribosome biogenesis and control of cell proliferation: p53 is not alone. Cancer Res 72(7):1602–1607. https://doi.org/10.1158/0008-5472.Can-11-3992

    Article  CAS  PubMed  Google Scholar 

  3. Pelletier J, Thomas G, Volarević S (2018) Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer 18(1):51–63. https://doi.org/10.1038/nrc.2017.104

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16(5):369–377. https://doi.org/10.1016/j.ccr.2009.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou X, Liao W-J, Liao J-M, Liao P, Lu H (2015) Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7(2):92–104. https://doi.org/10.1093/jmcb/mjv014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turi Z, Lacey M, Mistrik M, Moudry P (2019) Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 11(8):2512–2540. https://doi.org/10.18632/aging.101922

    Article  CAS  PubMed  Google Scholar 

  7. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the genome. Cell 165(1):22–33. https://doi.org/10.1016/j.cell.2016.02.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840. https://doi.org/10.1038/nature09267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16(11):651–664. https://doi.org/10.1038/nrm4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun X-X, Dai M-S, Lu H (2007) 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction*. J Biol Chem 282(11):8052–8059. https://doi.org/10.1074/jbc.M610621200

    Article  CAS  PubMed  Google Scholar 

  11. Dai M-S, Arnold H, Sun X-X, Sears R, Lu H (2007) Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 26(14):3332–3345. https://doi.org/10.1038/sj.emboj.7601776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai M-S, Sun X-X, Lu H (2010) Ribosomal protein L11 associates with c-Myc at 5 S rRNA and tRNA genes and regulates their expression*. J Biol Chem 285(17):12587–12594. https://doi.org/10.1074/jbc.M109.056259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai M-S, Zeng SX, Jin Y, Sun X-X, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24(17):7654–7668. https://doi.org/10.1128/MCB.24.17.7654-7668.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou X, Hao Q, Liao JM, Liao P, Lu H (2013) Ribosomal protein S14 negatively regulates c-Myc activity. J Biol Chem 288(30):21793–21801. https://doi.org/10.1074/jbc.M112.445122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao B, Fang Z, Liao P, Zhou X, Xiong J, Zeng S, Lu H (2017) Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit. Oncotarget 8(53):90651–90661. https://doi.org/10.18632/oncotarget.21544

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dai M-S, Lu H (2008) Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 105(3):670–677. https://doi.org/10.1002/jcb.21895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhattarai, N., Cao, B., Zeng, S.X., Lu, H. (2023). Ribosomal Profiling by Gradient Fractionation of Cell Lysates. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 2666. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3191-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3191-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3190-4

  • Online ISBN: 978-1-0716-3191-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics