Skip to main content

Performing Ribosome Profiling to Assess Translation in Vegetative and Meiotic Yeast Cells

  • Protocol
  • First Online:
Ribosome Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2252))

Abstract

Ribosome profiling, first developed in 2009, is the gold standard for quantifying and qualifying changes to translation genome-wide (Ingolia et al., Science, 2009). Though first designed and optimized in vegetative budding yeast, it has since been modified and specialized for use in diverse cellular states in yeast, as well as in bacteria, plants, human cells, and many other organisms (Ingolia et al. Science, 2009, reviewed in (Ingolia et al., Cold Spring Harb Perspect Biol, 2019; Brar and Weissman, Nat Rev Mol Cell Biol, 2015)). Here we report the current ribosome profiling protocol used in our lab to study genome-wide changes to translation in budding yeast undergoing the developmental process of meiosis (Brar et al., Science, 2012; Cheng et al., Cell, 2018). We describe this protocol in detail, including the following steps: collection and flash freezing samples, cell lysis and extract preparation, sucrose gradient centrifugation and monosome collection, RNA extraction, library preparation, and library quality control. Almost every step presented here should be directly applicable to performing ribosome profiling in other eukaryotic cell types or cell states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ingolia NT, Hussmann JA, Weissman JS (2019) Ribosome profiling: global views of translation. Cold Spring Harb Perspect Biol 11:a032698. https://doi.org/10.1101/cshperspect.a032698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brar GA, Weissman JS (2015) Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat Rev Mol Cell Biol 16:651–664. https://doi.org/10.1038/nrm4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brar GA, Yassour M, Friedman N et al (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–557. https://doi.org/10.1126/science.1215110

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Z, Otto GM, Powers EN et al (2018) Pervasive, coordinated protein-level changes driven by transcript isoform switching during meiosis. Cell 172:910–923.e16. https://doi.org/10.1016/j.cell.2018.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell AP (1994) Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev 58:56–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neiman AM (2011) Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189:737–765. https://doi.org/10.1534/genetics.111.127126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berchowitz LE, Gajadhar AS, van Werven FJ et al (2013) A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Genes Dev 27:2147–2163. https://doi.org/10.1101/gad.224253.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlile TM, Amon A (2008) Meiosis I is established through division-specific translational control of a cyclin. Cell 133:280–291. https://doi.org/10.1016/j.cell.2008.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berchowitz LE, Kabachinski G, Walker MR et al (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163:406–418

    Google Scholar 

  11. Jin L, Zhang K, Xu Y et al (2015) Sequestration of mRNAs modulates the timing of translation during meiosis in budding yeast. Mol Cell Biol 35:3448–3458. https://doi.org/10.1128/mcb.00189-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hollerer I, Higdon A, Brar GA (2018) Strategies and challenges in identifying function for thousands of sORF-encoded peptides in meiosis. Proteomics 18:1700274. https://doi.org/10.1002/pmic.201700274

    Article  CAS  Google Scholar 

  13. Ingolia NT, Brar GA, Rouskin S et al (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550. https://doi.org/10.1038/nprot.2012.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the genome. Cell 165:22–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santos DA, Shi L, Tu BP, Weissman JS (2019) Cycloheximide can distort measurements of mRNA levels and translation efficiency. Nucleic Acids Res 47:4974–4985. https://doi.org/10.1093/nar/gkz205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duncan CDS, Mata J (2017) Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe /631/337 /631/337/574 /38/91 /38/39 article. Sci Rep 7:1. https://doi.org/10.1038/s41598-017-10650-1

    Article  CAS  Google Scholar 

  17. Cheng Z, Brar GA (2019) Global translation inhibition yields condition-dependent de-repression of ribosome biogenesis mRNAs. Nucleic Acids Res 47:5061–5073. https://doi.org/10.1093/nar/gkz231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerashchenko MV, Gladyshev VN (2014) Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Res 42:e134. https://doi.org/10.1093/nar/gku671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hussmann JA, Patchett S, Johnson A et al (2015) Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet 11:e1005732. https://doi.org/10.1371/journal.pgen.1005732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Requião RD, de Souza HJA, Rossetto S et al (2016) Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors. RNA Biol 13:561–568. https://doi.org/10.1080/15476286.2016.1172755

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. elife 2014:e01257. https://doi.org/10.7554/eLife.01257

    Article  CAS  Google Scholar 

  22. Lecanda A, Nilges BS, Sharma P et al (2016) Dual randomization of oligonucleotides to reduce the bias in ribosome-profiling libraries. Methods 107:89–97. https://doi.org/10.1016/j.ymeth.2016.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinberg DE, Shah P, Eichhorn SW et al (2016) Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep 14:1787–1799. https://doi.org/10.1016/j.celrep.2016.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kearse MG, Goldman DH, Choi J et al (2019) Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev 33:871–885. https://doi.org/10.1101/gad.324715.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McGlincy NJ, Ingolia NT (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–129. https://doi.org/10.1016/j.ymeth.2017.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Nick Ingolia, the Ingolia lab, and Ze Cheng for technical assistance and helpful conversations. We thank Calvin Jan for sharing validated linker and oligo sequences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emily Nicole Powers or Gloria Ann Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Powers, E.N., Brar, G.A. (2021). Performing Ribosome Profiling to Assess Translation in Vegetative and Meiotic Yeast Cells. In: Labunskyy, V.M. (eds) Ribosome Profiling. Methods in Molecular Biology, vol 2252. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1150-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1150-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1149-4

  • Online ISBN: 978-1-0716-1150-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics