Skip to main content

Evaluation of Activated Protein C Resistance Using Thrombin Generation Test

  • Protocol
  • First Online:
Hemostasis and Thrombosis

Abstract

Activated protein C (APC) resistance (APCR) has been identified as a risk factor of venous thromboembolism (VTE). A mutation at the level of factor (F) V has at first permitted the description of this phenotypic pattern and corresponded to a transition (guanine to adenine) at nucleotide 1691 in the gene coding for factor V, resulting in the replacement of arginine at position 506 by a glutamine. This confers to this mutated FV a resistance toward the proteolytic action of the complex formed by activated protein C with protein S. However, many other factors also lead to APCR, such as other F5 mutations (e.g., FV Hong Kong and FV Cambridge), protein S deficiency, elevated factor VIII, exogenous hormone use, pregnancy, and postpartum. All these conditions lead to the phenotypic expression of APCR and are associated with an increased risk of VTE. Considering the large population affected, the proper detection of this phenotype is a public health challenge. Currently, two types of tests are available: clotting time-based assays and their multiple variants and a thrombin generation-based assays and the endogenous thrombin potential (ETP)-based APCR assay. As APCR was thought to be uniquely related to the FV Leiden mutation, clotting time-based assays were specifically designed to detect this inherited condition. Nevertheless, other APCR conditions have been reported but were not captured by these clotting methods. Thus, the ETP-based APCR assay has been proposed as a global coagulation test able to these multiple APCR conditions, as it provides much more information, which makes it a potential candidate for screening coagulopathic conditions before therapeutic interventions. This chapter will describe the current method used for the realization of the ETP-based APC resistance assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

COC:

Combined oral contraceptive

CPA:

Cyproterone acetate

DRSP:

Drospirenone

DSG:

Desogestrel

EE:

Ethinylestradiol

GSD:

Gestodene

LNG:

Levonorgestrel

nAPCsr:

Normalized activated protein C sensitivity ratio

RR:

Relative risk

SD:

Standard deviation

VTE:

Venous thromboembolism

References

  1. Dahlback B (2005) The importance of the protein C system in the pathogenesis of venous thrombosis. Hematology 10(Suppl 1):138–139. https://doi.org/10.1080/10245330512331390195

    Article  CAS  PubMed  Google Scholar 

  2. Dahlback B, Villoutreix BO (2005) The anticoagulant protein C pathway. FEBS Lett 579(15):3310–3316. https://doi.org/10.1016/j.febslet.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  3. Morimont L, Donis N, Bouvy C, Mullier F, Dogne JM, Douxfils J (2022) Laboratory testing for the evaluation of phenotypic activated protein C resistance. Semin Thromb Hemost 48(6):680–689. https://doi.org/10.1055/s-0042-1753511

  4. Esmon CT (2003) The protein C pathway. Chest 124(3 Suppl):26S–32S. https://doi.org/10.1378/chest.124.3_suppl.26s

    Article  CAS  PubMed  Google Scholar 

  5. Tans G, van Hylckama Vlieg A, Thomassen MC, Curvers J, Bertina RM, Rosing J, Rosendaal FR (2003) Activated protein C resistance determined with a thrombin generation-based test predicts for venous thrombosis in men and women. Br J Haematol 122(3):465–470. https://doi.org/10.1046/j.1365-2141.2003.04443.x

    Article  CAS  PubMed  Google Scholar 

  6. Castoldi E, Brugge JM, Nicolaes GA, Girelli D, Tans G, Rosing J (2004) Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood 103(11):4173–4179. https://doi.org/10.1182/blood-2003-10-3578

    Article  CAS  PubMed  Google Scholar 

  7. Rodeghiero F, Tosetto A (1999) Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism. Ann Intern Med 130:643–650

    Article  CAS  PubMed  Google Scholar 

  8. de Visser MCH, Rosendaal FR, Bertina RM (1999) A reduced sensitivity for activated protein C in the absence of factor V leiden increases the risk of venous thrombosis. Blood 93(4):1271–1276. https://doi.org/10.1182/blood.V93.4.1271

    Article  PubMed  Google Scholar 

  9. Cramer TJ, Griffin JH, Gale AJ (2010) Factor V is an anticoagulant cofactor for activated protein C during inactivation of factor Va. Pathophysiol Haemost Thromb 37(1):17–23. https://doi.org/10.1159/000315141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dahlbck B (1997) Resistance to activated protein C caused by the R506Q mutation in the gene for factor V is a common risk factor for venous thrombosis. J Intern Med Suppl 740:1–8

    Article  CAS  PubMed  Google Scholar 

  11. Khan S, Dickerman JD (2006) Hereditary thrombophilia. Thromb J 4:15. https://doi.org/10.1186/1477-9560-4-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kujovich JL (2011) Factor V Leiden thrombophilia. Genet Med 13(1):1–16. https://doi.org/10.1097/GIM.0b013e3181faa0f2

    Article  CAS  PubMed  Google Scholar 

  13. Hotoleanu C (2017) Genetic risk factors in venous thromboembolism. Adv Exp Med Biol 906:253–272. https://doi.org/10.1007/5584_2016_120

    Article  CAS  PubMed  Google Scholar 

  14. Khor B, Van Cott EM (2009) Laboratory evaluation of hypercoagulability. Clin Lab Med 29(2):339–366. https://doi.org/10.1016/j.cll.2009.03.002

    Article  PubMed  Google Scholar 

  15. Germain M, Chasman DI, de Haan H, Tang W, Lindstrom S, Weng LC, de Andrade M, de Visser MC, Wiggins KL, Suchon P, Saut N, Smadja DM, Le Gal G, van Hylckama VA, Di Narzo A, Hao K, Nelson CP, Rocanin-Arjo A, Folkersen L, Monajemi R, Rose LM, Brody JA, Slagboom E, Aissi D, Gagnon F, Deleuze JF, Deloukas P, Tzourio C, Dartigues JF, Berr C, Taylor KD, Civelek M, Eriksson P, Cardiogenics C, Psaty BM, Houwing-Duitermaat J, Goodall AH, Cambien F, Kraft P, Amouyel P, Samani NJ, Basu S, Ridker PM, Rosendaal FR, Kabrhel C, Folsom AR, Heit J, Reitsma PH, Tregouet DA, Smith NL, Morange PE (2015) Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism. Am J Hum Genet 96(4):532–542. https://doi.org/10.1016/j.ajhg.2015.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pezeshkpoor B, Castoldi E, Mahler A, Hanel D, Muller J, Hamedani NS, Biswas A, Oldenburg J, Pavlova A (2016) Identification and functional characterization of a novel F5 mutation (Ala512Val, FVBonn) associated with activated protein C resistance. JTH 14(7):1353–1363. https://doi.org/10.1111/jth.13339

    Article  CAS  PubMed  Google Scholar 

  17. Bernardi F (2016) Better or worse than the original. Journal of thrombosis and haemostasis: JTH 14(7):1350–1352. https://doi.org/10.1111/jth.13357

    Article  CAS  PubMed  Google Scholar 

  18. Norstrom E, Thorelli E, Dahlback B (2002) Functional characterization of recombinant FV Hong Kong and FV Cambridge. Blood 100(2):524–530. https://doi.org/10.1182/blood-2002-02-0343

    Article  CAS  PubMed  Google Scholar 

  19. Castoldi E, Hezard N, Mourey G, Wichapong K, Poggi M, Ibrahim-Kosta M, Thomassen M, Fournel A, Hayward CPM, Alessi MC, Hackeng TM, Rosing J, Morange PE (2021) Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besancon). J Thromb Haemost 19(5):1186–1199. https://doi.org/10.1111/jth.15274

    Article  CAS  PubMed  Google Scholar 

  20. Dahlback B (2004) APC resistance: what have we learned since 1993? J Lab Med 28(1):21–27

    Google Scholar 

  21. Steen M, Norstrom EA, Tholander AL, Bolton-Maggs PH, Mumford A, McVey JH, Tuddenham EG, Dahlback B (2004) Functional characterization of factor V-Ile359Thr: a novel mutation associated with thrombosis. Blood 103(9):3381–3387. https://doi.org/10.1182/blood-2003-06-2092

    Article  CAS  PubMed  Google Scholar 

  22. Nogami K, Shinozawa K, Ogiwara K, Matsumoto T, Amano K, Fukutake K, Shima M (2014) Novel FV mutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden. Blood 123(15):2420–2428. https://doi.org/10.1182/blood-2013-10-530089

    Article  CAS  PubMed  Google Scholar 

  23. Bernardi F, Faioni EM, Castoldi E, Lunghi B, Castaman G, Sacchi E, Mannucci PM (1997) A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood 90:1552–1557

    Article  CAS  PubMed  Google Scholar 

  24. de Visser MC, Guasch JF, Kamphuisen PW, Vos HL, Rosendaal FR, Bertina RM (2000) The HR2 haplotype of factor V: effects on factor V levels, normalized activated protein C sensitivity ratios and the risk of venous thrombosis. Thromb Haemost 83(4):577–582

    Article  PubMed  Google Scholar 

  25. Aleksova A, Di Nucci M, Gobbo M, Bevilacqua E, Pradella P, Salam K, Barbati G, De Luca A, Mascaretti L, Sinagra G (2015) Factor-V HR2 haplotype and thromboembolic disease. Acta Cardiol 70(6):707–711. https://doi.org/10.2143/AC.70.6.3120184

    Article  PubMed  Google Scholar 

  26. ten Kate MK, van der Meer J (2008) Protein S deficiency: a clinical perspective. Haemophilia 14(6):1222–1228. https://doi.org/10.1111/j.1365-2516.2008.01775.x

    Article  CAS  PubMed  Google Scholar 

  27. Yap ES, Timp JF, Flinterman LE, van Hylckama VA, Rosendaal FR, Cannegieter SC, Lijfering WM (2015) Elevated levels of factor VIII and subsequent risk of all-cause mortality: results from the MEGA follow-up study. J Thromb Haemost 13(10):1833–1842. https://doi.org/10.1111/jth.13071

    Article  CAS  PubMed  Google Scholar 

  28. Jenkins PV, Rawley O, Smith OP, O'Donnell JS (2012) Elevated factor VIII levels and risk of venous thrombosis. Br J Haematol 157(6):653–663. https://doi.org/10.1111/j.1365-2141.2012.09134.x

    Article  CAS  PubMed  Google Scholar 

  29. de Bastos M, Stegeman BH, Rosendaal FR, Van Hylckama VA, Helmerhorst FM, Stijnen T, Dekkers OM (2014) Combined oral contraceptives: venous thrombosis. Cochrane Database Syst Rev 3:CD010813. https://doi.org/10.1002/14651858.CD010813.pub2

    Article  Google Scholar 

  30. Dinger J, Do Minh T, Heinemann K (2016) Impact of estrogen type on cardiovascular safety of combined oral contraceptives. Contraception 94(4):328–339. https://doi.org/10.1016/j.contraception.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  31. Heit JA, Kobbervig CE, James AH, Petterson TM, Bailey KR, Melton LJ III (2005) Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-years-based study. Ann Intern Med 143:697–706

    Article  PubMed  Google Scholar 

  32. Jick H, Jick S, Gurewich V, Myers MW, Vasilakis C (1995) Risk of idiopathic cardiovascular death and nonfatal venous thromboembolism in women using oral contraceptives with differing progestagen components. Lancet 346:1589–1593

    Article  CAS  PubMed  Google Scholar 

  33. Lidegaard O, Lokkegaard E, Svendsen AL, Agger C (2009) Hormonal contraception and risk of venous thromboembolism: national follow-up study. BMJ 339(2):b2890. https://doi.org/10.1136/bmj.b2890

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spitzer WO, Lewis MA, Heinemann LAJ, Thorogood M, Macrae KD (1996) Third generation oral contraceptives and risk of venous thromboembolic disorders: an international case-control study. BMJ 312:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Hylckama VA, Helmerhorst FM, Vandenbroucke JP, Doggen CJ, Rosendaal FR (2009) The venous thrombotic risk of oral contraceptives, effects of oestrogen dose and progestogen type: results of the MEGA case-control study. BMJ 339:b2921. https://doi.org/10.1136/bmj.b2921

    Article  Google Scholar 

  36. Rovinski D, Ramos RB, Fighera TM, Casanova GK, Spritzer PM (2018) Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: a systematic review and meta-analysis. Thromb Res 168:83–95. https://doi.org/10.1016/j.thromres.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  37. Douxfils J, Morimont L, Bouvy C (2020) Oral contraceptives and venous thromboembolism: focus on testing that may enable prediction and assessment of the risk. Semin Thromb Hemost 46(8):872–886. https://doi.org/10.1055/s-0040-1714140

    Article  CAS  PubMed  Google Scholar 

  38. Brenner B (2004) Haemostatic changes in pregnancy. Thromb Res 114(5–6):409–414. https://doi.org/10.1016/j.thromres.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  39. Morimont L, Haguet H, Dogné J-M, Gaspard U, Douxfils J (2021) Combined oral contraceptives and venous thromboembolism: review and perspective to mitigate the risk. Front Endocrinol:12. https://doi.org/10.3389/fendo.2021.769187

  40. Douxfils J, Gaspard U, Taziaux M, Jost M, Bouvy C, Lobo RA, Utian WH, Foidart JM (2022) Impact of estetrol (E4) on hemostasis, metabolism, and bone turnover in postmenopausal women. Climacteric

    Google Scholar 

  41. Douxfils J, Morimont L, Gaspard U, Utian WH, Foidart JM (2022) Estetrol is not a SERM but a NEST and has a specific safety profile on coagulation. Thromb Res. https://doi.org/10.1016/j.thromres.2022.09.007

  42. Morimont L, Jost M, Gaspard U, Foidart JM, Dogné JM, Douxfils J (2022) Low thrombin generation in users of a contraceptive containing estetrol and drospirenone. J Clin Endocrinol Metabol 108:135. https://doi.org/10.1210/clinem/dgac511

    Article  Google Scholar 

  43. European Medicines Agency (2005) Guideline on clinical investigation of steroid contraceptives in women – EMEA/CPMP/EWP/519/98 Rev 1. https://www.ema.europa.eu/documents/scientific-guideline/guideline-clinical-investigation-steroid-contraceptives-women_en.pdf

  44. Morimont L, Didembourg M, Haguet H, Modaffari E, Tillier M, Bouvy C, Lebreton A, Dogne JM, Douxfils J (2021) Interlaboratory variability of activated protein C resistance using the ETP-based APC resistance assay. Res Pract Thromb Haemost 5(7):e12612. https://doi.org/10.1002/rth2.12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Clinical and Laboratory Standards Institute (2008) Collection, transport, and processing of blood specimens for testing plasma-based coagulation assays and molecular hemostasis assays; approved guideline — fifth edition. CLSI document H21-A5, Wayne

    Google Scholar 

  46. Douxfils J, Morimont L, Delvigne AS, Devel P, Masereel B, Haguet H, Bouvy C, Dogne JM (2020) Validation and standardization of the ETP-based activated protein C resistance test for the clinical investigation of steroid contraceptives in women: an unmet clinical and regulatory need. CCLM/FESCC 58(2):294–305. https://doi.org/10.1515/cclm-2019-0471

    Article  CAS  Google Scholar 

  47. Morimont L, Leclercq C, Didembourg M, De Gottal E, Carlo A, Gaspard U, Dogne JM, Douxfils J (2022) Analytical performance of the endogenous thrombin potential-based activated protein C resistance assay on the automated ST Genesia system. Res Pract Thromb Haemost 6(3):e12684. https://doi.org/10.1002/rth2.12684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Douxfils J, Morimont L, Bouvy C, de Saint-Hubert M, Devalet B, Devroye C, Dincq AS, Dogne JM, Guldenpfennig M, Baudar J, Larock AS, Lessire S, Mullier F (2019) Assessment of the analytical performances and sample stability on ST Genesia system using the STG-DrugScreen application. JTH 17(8):1273–1287. https://doi.org/10.1111/jth.14470

    Article  CAS  PubMed  Google Scholar 

  49. Clinical and Laboratory Standards Institute (2013) User evaluation of between-reagent lot variation. CLSI document EP26-A. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  50. Morimont L, Dogne JM, Douxfils J (2020) Letter to the editors-in-chief in response to the article of Abou-Ismail, et al. entitled “estrogen and thrombosis: a bench to bedside review” (thrombosis research 192 (2020) 40–51). Thromb Res 193:221–223. https://doi.org/10.1016/j.thromres.2020.08.006

    Article  CAS  PubMed  Google Scholar 

  51. Gemzell-Danielsson K, Cagnacci A, Chabbert-Buffet N, Douxfils J, Foidart JM, Kubba A, Lete Lasa LI, Mansour D, Neulen J, Neves J, Palma F, Romer T, Spaczynski R, Toth V (2022) A novel estetrol-containing combined oral contraceptive: European expert panel review. Eur J Contracept Reprod Health Care 27(5):1–11. https://doi.org/10.1080/13625187.2022.2093850

    Article  CAS  Google Scholar 

  52. Morimont L, Bouvy C, Delvigne AS, Dogne JM, Douxfils J (2020) Proof of concept of a new scale for the harmonization and the standardization of the ETP-based APC resistance. JTH 18(4):895–904. https://doi.org/10.1111/jth.14745

    Article  CAS  PubMed  Google Scholar 

  53. Douxfils J, Klipping C, Duijkers I, Kinet V, Mawet M, Maillard C, Jost M, Rosing J, Foidart JM (2020) Evaluation of the effect of a new oral contraceptive containing estetrol and drospirenone on hemostasis parameters. Contraception 102(6):396–402. https://doi.org/10.1016/j.contraception.2020.08.015

    Article  CAS  PubMed  Google Scholar 

  54. Douxfils J, Lobo R, Taziaux M, Jost M, Bouvy C, Gaspard U, Foidart J-M (2021) Estetrol (E4) is a native fetal estrogen that does not modify coagulation markers in postmenopausal women and maintains sensitivity to activated protein C (APC). Maturitas 152:69. https://doi.org/10.1016/j.maturitas.2021.08.013

    Article  Google Scholar 

  55. Morimont L, Haguet H, Dogne JM, Gaspard U, Douxfils J (2021) Combined oral contraceptives and venous thromboembolism: review and perspective to mitigate the risk. Front Endocrinol (Lausanne) 12:769187. https://doi.org/10.3389/fendo.2021.769187

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the technical teams of QUALIblood s.a. and the Walloon region in Belgium.

Disclosure Summary

L.M and C.B. are employees of QUALIblood s.a.; J.D. is the CEO and founder of QUALIblood s.a. and reports personal fees and honorarium from Daiichi Sankyo, Diagnostica Stago, DOASense, Gedeon Richter, Mithra Pharmaceuticals, Norgine, Portola, Roche, and Roche Diagnostics.

Permissions and Reprint

The authors have received permission to reuse some part of the manuscript entitled “Laboratory Testing for the Evaluation of Phenotypic Activated Protein C Resistance” published in Seminars in Thrombosis and Hemostasis (doi: 10.1055/s-0042-1753511; License number: 5420660873500; Licensed Content Publisher: Georg Thieme Verlag KG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Douxfils .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Douxfils, J., Bouvy, C., Morimont, L. (2023). Evaluation of Activated Protein C Resistance Using Thrombin Generation Test. In: Favaloro, E.J., Gosselin, R.C. (eds) Hemostasis and Thrombosis. Methods in Molecular Biology, vol 2663. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3175-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3175-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3174-4

  • Online ISBN: 978-1-0716-3175-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics